当前位置:范文派>教学范文>教学反思>《圆的面积》教学反思

《圆的面积》教学反思

时间:2024-07-14 05:26:14 教学反思 我要投稿

《圆的面积》教学反思

  身为一名刚到岗的人民教师,课堂教学是重要的任务之一,写教学反思能总结我们的教学经验,教学反思要怎么写呢?以下是小编收集整理的《圆的面积》教学反思 ,欢迎阅读与收藏。

《圆的面积》教学反思

《圆的面积》教学反思 1

  圆的周长和面积是义务教科书六年级上册第五单元内容,是在学生初步掌握圆的特征后进行的教学,也是学生以后学习圆柱、圆锥的重要基础。圆是一种曲线图形,它的周长、面积公式的推导过程比较抽象,学生不易理解。初学这部分知识,学生在运用周长公式、面积公式解决问题时往往发生混淆。为此我上了一节圆的周长和面积的复习课。从以下几方面体现我的设计理念:

  一、 数学与生活密切联系。《新课标》指出:数学应该是从学生生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。复习课也应如此,上课开始,我出示一组关于圆的生活图片,让学生在欣赏人文景观的美时,同时感受圆在生活中用处之广。为什么这些地方都用圆形呢?以此激起学生思维的波澜,积极地回忆圆的特征。练习题的设计也紧贴学生生活,突出了“让学生在生活中学数学,在生活中用数学的理念”。让学生了解数学的价值,增强学好数学的自信心。

  二、 注重教给学生学习方法。授人以鱼不如授人以渔。本节课我教给学生复习整理知识的方法,教师从学生零乱的知识回忆中提炼出关键概念板书在黑板上,把概念间的联系展现出来,把方法示范给学生。让学生画一画圆转化成近似长方形的草图,体会知识的形成过程,提高理解能力。学生并灵活运用此法很快解决了练习题中的钟表问题。

  三、 运用多媒体技术,激发学生学习兴趣。多媒体技术不仅给课堂增加了趣味性,而且直观、形象地再现了知识的形成过程。圆的周长与直径的关系课件,圆的面积公式推导过程课件生动形象的演示代替语言的描述,使学生更加清楚地理解了概念,很直观的看出近似长方形的周长与圆的周长之间的关系。突破了知识的难点。

  四、 练习设计既照顾全体学生,又体现“开放性”。《新课标》提出:教学中应尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法。这节课,我设计的练习题有易到难,并适度运用开放化教学,引导学生提出有价值的`数学问题,发现有价值的数学规律,使每个学生都能不同程度的获得和谐发展。

  五、 加强对比练习。针对学生平时忽略和错误较多的典型问题重点复习,牵一发而动全身,使学生对知识间的联系与区别理解更加深入,真正达到查漏补缺的目的。

  这节课,圆满完成了我的预设目标,知识目标和能力目标。但在情感态度目标上有缺陷。教师的激励语言较少,学生的学习激情没被煽动起来,课堂气氛显得不够活跃。

《圆的面积》教学反思 2

  本节课是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。

  成功之处:

  1、以数学思想为引领,探索圆的面积计算公式的推导。学生对于把圆的面积转化为已学过图形的面积并不陌生,通过以前相关知识的学习,学生很自然想到利用转化思想把圆的面积转化为长方形、平行四边形的面积来推导计算圆的面积。在教学中,我首先通过出示学过的图形长方形、正方形、三角形、平行四边形、梯形,让学生回顾这些图形的面积计算,从而为教学圆的面积做好铺垫。

  2、利用多媒体的优势,与学生的实际操作相结合,使学生不仅知道圆的面积推导过程,还在学习中再一次温习转化思想,掌握解决问题的策略。在教学中,通过学生的操作,与多媒体的动态演示,使学生清楚的发现圆的面积与近似长方形面积之间的关系:近似长方形的长相当于圆周长的一半,宽相当于圆的半径,由此推导出圆的'面积是:S=πr2。

  不足之处:

  学生由于事先在课前已把课本中的附页圆等分剪下来,对于把圆的面积转化成长方形、平行四边形有了一定的思维限制,学生是不是只是单纯的操作,而忽略了思维的进一步深入,还有待研究。

  再教设计:

  尽量放手给予学生最大的思考时间和空间,让学生在思索、质疑中不断建构知识的来龙去脉,习题要精选,注意变化的形式。

《圆的面积》教学反思 3

  本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。

  一、故事激趣,渗透“转化”

  本课开始,我引导学生回忆简述了“曹冲称象”的故事,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的'面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、演示操作,加深理解

  当学生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。

  这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

  在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。

《圆的面积》教学反思 4

  《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生用学过的方法来实现转化和推导。在教学本课时,我注意了这样几点:

  1、密切联系学生的生活实际。剪纸是学生所熟悉的,借助这一操作,让学生初步地感知到圆和直线型图形之间的.转化,所以在后面估计圆的面积大小时,学生就很自然地想到了两种估计的方法。其次,借助教材中生活场景,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生解决问题的积极性,使全体学生积极参与到数学学习活动中。

  2、引导学生观察发现新旧知识的联系,理解发现“化曲为直”。当学生第一次面对求圆这种曲线图形的面积时,老师不是提供现成的转化方法,而是让学生去思考,为什么数圆的面积比数正方形的面积要难,究竟难在什么地方?有什么办法可以解决?这些问题需要学生主动去回顾圆的特征、主动探究学习方法。

  3、充分发挥多媒体课件、及圆面积演示器的作用。在教学中,教师通过计算机演示很好地诠释了化曲为直中“无限接近“的极限思想;在推导圆的面积公式时,充分运用圆面积演示器,先展示四种转化的情况,然后分小组进行观察,比较转化前后图形间的联系,最后发现无论转化后的图形是长方形还是平行四边形,无论是否很接近长方形或平行四边形,最后推导出来的面积计算公式是一样的,也有力地说明圆的面积计算公式的正确性。

  几何图形课的教学,就是要充分利用已有知识,学会迁移。要充分发挥直观教学的作用,帮助学生由感性向理性、由具体向抽象转化的思维过程。更要发挥现代化教学手段,使学生能在较短的时间内接触较多的信息,完成知识的建构。

《圆的面积》教学反思 5

  圆的面积的推导是建立上转换思想上推导出来的,在课前预习上我让学生自己准备一个圆平均分成偶数等分8。12。16。24均可,并未说明均等分以后的作用,让学生带着疑问进入到今天的学习。

  学习之初,我课件出示的是工人铺人工草坪,问草坪的面积是多少平方米?这个问题,一方面让学生了解圆的面积的意义,另一方面也使他们体会数学与生活的紧密联系和学习数学的必要性,由于学生没有学过曲线围城图形的面积求解,所以课堂的开始关于草坪面积的求解,学生毫无头绪,这时再讲让学生回忆三角形,平行四边形的推导过程,学生能顺利回忆出释割补,拼接转化成他们熟悉的图形长方形。这时再顺利过渡到圆的面积的推导我们是不是也可以用这样的办法呢,就水到渠成了。

  在让学生拿出自己准备好均分的圆,自己试着拼一拼中,发现大部分同学都只是均分成了八份,离长方形的还有一定的.距离,这时我课件出示。16,32等分以后拼成的图形使学生发现分的份数越多,拼成的图形的边就越直,越接近于长方形,在这种理解和掌握圆的面积公式的推导过程中,不仅培养了学生的动手能力,还培养了学生的极限思想。

  在这节课的学习中发现以下几点不足之处:

  一:学生的动手能力差。在让学生课前准备圆,第二天检查时仍然发现好多同学没有准备,在准备的同学中,均分到8份以上的同学又少之又少,所以在以后的教学中会事先分好组,避免出现此类事情。

  二:观察能力差。由圆拼成长方形以后,观察长方形的长与宽与圆的半径和周长由什么关系时,很多同学并不能找到他们之间的关系,由此发现学生的观察能力还需要进一步的引导和培养。

《圆的面积》教学反思 6

  本堂课的教学目标理解圆的面积公式的推导过程,掌握圆的面积的计算方法,培养学生的动手操作能力和逻辑推理能力。在过程设计上,首先联系生活中的小事情导入,意在激起学生继续学习的兴趣,同时让学生意识到数学与生活紧密联系在一起,教育学生仔细观察生活,热爱生活。接着复习圆各部分的名称,特别要提到圆的周长的一半的字母表达。

  让学生明确,求圆的面积是在求圆的哪部分。此处联系长方形和正方形的面积的定义。学生通过回忆平行四边形、三角形的面积公式推导,重新熟悉“转化”方法。这些都是为了下面把圆转化到长方形来,从而推导出圆的`面积公式做铺垫。

  本堂课最重要的环节在解决两个问题:一是可以把圆转化为什么图形来解决;二是转化成长方形后,长方形的长和宽相当于圆的哪部分。解决好这两个问题,课堂教学的效果马上能体现出来。我在教学时使用了两个工具:课件和学具。课件展示把圆分成8等分、16等分、32等分、64等分。把它们再拼在一起,发现拼成的图形越来越近似一个长方形。学具的使用,目的在让学生自己去探讨,从圆到长方形,什么变了,什么没有改变。而拼成的长方形的长和宽相当于圆的什么。通过多次的转化和还原实验,发现拼成的长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。最后由长方形的面积公式得到圆的面积公式。

  课堂最主要的环节在于观察和操作的过程。在教学中要充分的相信学生,把课堂完全交给他们去发挥。鼓励学生去发现和探讨,发挥学生在学习中的主体地位。

  在得出结论之后,我给学生安排了几个练习,练习的难度不大,目的是让学生掌握最基本的正确求出圆的面积。在计算时要强调先计算半径的平方,后再与π相乘。要求面积,必须先要算出圆的半径。

  学生在学的过程中体现了很高的兴趣,从练习中发现学习的效果也很显著,这都于导入时练习生活,教学中让学生主动动手有很大关系。

  当然,这堂课也存在很多的问题,在个别问题的引导上,还是不到位。比如:拼成的长方形于圆的各部分之间的关系。练习中也应该加入稍微有难度的题目会更好。

《圆的面积》教学反思 7

  教学内容: 圆的面积 教学目标:

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

  2、理解圆的面积公式的推导过程,感受转化的数学思想。

  3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重难点:

  重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:

  一、谈话引入

  明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)

  导入课题:圆的面积

  二、引导探究

  1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?

  (在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?

  (2)猜测圆的面积与半径有什么关系?

  正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……

  2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的平面图形的面积推导过程。

  A、长方形、正方形,直接用面积单位去量,找规律得到的;

  B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。

  (2)统一认识,寻求转化的方法

  A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;

  B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。

  (3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形

  同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。

  长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)

  长方形的面积 = 长 × 宽

  圆的面积 = 圆周长一半( r)×半径(r)

  S = π r2 B、拼成近似的三角形

  三角形的面积=底×高÷2 圆的面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2

  B、圆的面积与什么有关?回到课始的猜测。

  三、总结

  本节课你有什么收获?

  四、实践

  1、已知r=4cm,求S。

  2、已知d=8cm,求S。

  板书设计:

  圆的面积

  圆所占平面的大小叫圆的面积。

  长方形的面积 = 长 × 宽

  圆的面积 = πr × r = πr2

  《 圆的面积》教学反思

  济渎路 翟彩艳

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的.一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

  一、感受圆的周长与面积的不同

  本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、学具演示,激发探究

  通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。

  三、分层练习,体验运用价值

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地

  参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

  在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。

《圆的面积》教学反思 8

  一、创设情境,导入新课

  课件演示:1、让学生想一想自动喷水装置喷水范围应该有多大呢?是什么形状?

  2、现在你想提什么数学问题?

  揭示课题:圆的面积

  二、师生互动,推导公式。

  1、认识圆的面积

  a、什么是圆的面积呢?

  b、出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

  c、圆的大小主要与哪些因素有关?(半径、直径、周长)

  出示结语:圆所占平面的大小叫做圆的面积

  2、回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)

  三、生生互动,推导公式

  圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!

  1、小组讨论:设计方案,并汇报。

  a、让学生拿出卡纸(1),观察卡纸(1)上的圆被分成多少等分,圆被转化成什么图形呢?

  b、让学生拿出卡纸(2),观察卡纸(2)上的圆被分成多少等分,圆又被转化成什么图形呢?

  那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)

  c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)

  d、观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?

  发现:平均分的份数越多,拼成的图形越接近长方形。

  e、转化成长方形,推导圆的面积公式。

  动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。

  展现以下问题:(1)长方形的长相当于圆的()?(2)长方形的宽相当于圆的()?

  (3)长方形的面积相当于圆的()?(4)因为长方形的面积=()所以圆的面积=()。

  2、小组讨论后,并演示公式推导的全过程。

  3、揭示字母公式()。

  小结:可见要求圆的面积只要知道什么就行?(半径)

  四、练习巩固

  1、运用公式学习例1。

  学生试做,说理由,归纳总结。

  2、完成基本练习(做一做)

  五、解决问题

  解决课件问题。

  六、课堂总结

  1、这节课我们发现了什么、学会了什么?

  2、希望同学们在今后的.学习中更好地运用好转化的方法去学习更多的数学知识。

  七、课外作业

  练习十六的1~3题

  《圆的面积》教学反思

  本节课充分体现了教为主导,学为主体的探究性自主学习与小组合作学习相结合的教学思想。并在师生互动、生生互动中去完成教学任务。由于学生已经有了探究三角形、平行四边形、梯形面积公式的经验。本课一开始我就鼓励学生回忆以前是如何研究平面图形的面积的呢?现在又如何探究圆的面积呢?刚开始学生有点不知所措。但现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。其次再通过把圆从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再让学生从这个长方形中找到圆的周长,从8等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于打下基础。

  圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。让学生知道新的问题可以转化成旧的知识,并利用旧的知识解决新的问题。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。然后让生生互动,再根据自己的发现,小组合作,动手探究把圆转化成学过的平面图形。并通过这个环节来加深对新知识的巩固。在这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图

《圆的面积》教学反思 9

  圆的面积是小学六年级数学下学期教学的重点内容。我教小学毕业班已经十余年了,自然这节课我讲的也不下十余次了,以前在偃师市讲过,也在洛阳市也讲过。虽然每次都反映不错,可我总觉得不太满意,总觉得这节课的容量少了点,今年我决定改变以往的教学方法,增加课堂容量。

  以前我是这样安排课堂结构的:谈话引入圆面积后,让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,然后教师动画演示,从而得出采用转化图形的方法,把新的图形转化成以前学过的图形来研究,使学生从中受到启发,进而想到把圆形也转化成以前学过的图形来研究。然后通过学生的动手操作、自主探究、合作交流,最后自己推导出圆面积计算公式。让学生在课堂上把8等份圆、16等份圆,先剪一剪、再拼一拼,在学生动手操作后,教师再动画演示32等份圆、64等分圆、128等份圆所拼成的.图形更接近长方形。最后想一想:所拼近似长方形的长和宽与圆的什么有关系(近似长方形的长相当于圆周长的一半,宽相当于圆的半径),由长方形面积公式继而推导出圆面积公式。圆面积公式推导出来后,时间已所剩不多,学生运用公式解决问题的时间很少。环形的面积计算需要下一个课时进行。

  今年我经过思考,决定这样做:让学生提前预习,小组内3、4号同学做8等份圆,1、2号同学做16等份圆,两人所做圆形的大小一样,所涂的颜色也一样,其中一个用剪刀剪好,一个不剪,以备上课时使用。

  今年的课堂结构调整为:一开始由本节主题图引入,已知每平方米草皮8元钱,一个圆形草坪需要多少元钱?要解决这个问题就要求出圆的面积,由此引入新课。紧接着出示本节课的学习目标。接下来依然让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,渗透转化思想,使学生自然想到把圆形也转化成以前学过的图形来研究。然后让学生拿出自己制作的学具,先俩俩合作(1、2号合作,3、4号合作),再四人小组合作,在课桌上拼图。通过几次拼图发现,所拼近似长方形的长近似于圆周长的一半,宽近似于圆的半径。各小组展示后我用演示4等份圆,8等份圆、16等份圆、32等份圆、64等份圆……所拼成的图形,学生迅速发现,把圆等分的份数与多,拼成的图形越接近长方形,自己很快就推导出圆面积计算公式。这样就节约了大量的时间来进行公式实际运用的练习了。本节课学生不但会计算圆的面积,还会计算环形的面积……这样环环相扣,学以致用,学生学习积极性极高,既熟练的掌握了公式,又有了自主解决问题的成就感,圆满完成本节的学习目标。

  不过这节课,也暴露出了一些问题:例如学生在计算平方的时候,出错较多,6的平方,应该是36 ,很多学生错误的把它算成12 ,这说明我对学情分析还不透彻,再例如学生的书写格式也不够规范等,所有这些还有待今后进一步提高。

《圆的面积》教学反思 10

  圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算

  学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环 的本质问题。

  根据以前的经验,也总是通过实例 ,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积,总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,.概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环, 通过观察或量一量圆 环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的.图片,来让学生分辨,明白圆环是同心圆,第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操 作也有课件濱示,还有练习, 非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴

  趣。 也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积.

  学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积,但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、 “环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

  通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展.

《圆的面积》教学反思 11

  数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。

  在讲授《圆的面积》一课时,由于学生熟悉了研究平面图形的思路:认识特征——周长——面积,所以范老师采用了复习旧知、直奔主题的引入方式,既有利于学生形成研究问题的思路,把新知识纳入已有的认知结构,又简洁明快,结构紧凑,为学生后面的探究提供了时间上的保证。

  圆与学生以前探究的长方形、正方形、平行四边形、三角形、梯形等都有所不同,因为它是平面上的曲线图形,因此当范老师提出“怎么求圆的面积呢”,学生并不能马上找到解决的方法。有的学生一开始无从下手,这时,把时间给学生,把探究的空间给学生,充分相信学生能行,引导学生从头脑里检索已有的知识和方法,让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。

  范老师能够深入了解学生探究圆面积的心理,知道有的学生脑子里不是一片空白的,尊重学生的原创思维。

  通过探究,通过剪拼把圆转化成近似的平行四边形。引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。

  当动手操作已经无法再完成时,范老师用课件动态演示,弥补操作与想象的'不足,帮助学生进一步感知平均分的份数越多,剪拼成的图形越来越像平行四边形。围绕着“怎样更像”进行了一次又一次的追问,让学生充分地体验了“极限思想”。

  本课重点是引导学生去经历探究圆的面积公式的过程,范老师充分体验“转化”和“极限思想”,所以安排比较少,虽然这节课只设计了几个基本练习来检验学生对圆的面积的理解和掌握程度,但这并不妨碍这节课的精彩。

《圆的面积》教学反思 12

  目标预设:

  1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。

  教学过程:

  一、引导估计,初步感知。

  1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

  2、估计圆面积大小与半径的关系。

  师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

  二、动手操作,共同探索。

  1、引发转化,形成方案。

  (1)我们如何推导三角形,平行四边形,梯形的面积公式的?

  (2)准备如何去推导圆的面积?

  2、动手操作,共同探究

  (1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

  (2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

  (3)比较:与刚才老师拼成的图形有何不同?

  (4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

  如果一直这样分下去,拼成的图形会怎么样?

  3、引导比较,推导公式。

  圆与拼成的长方形之间有何联系?

  引导学生从长方形的面积,长宽三个角度去思考。

  根据学生回答,相机板书。

  长方形的面积=长×宽

  ↓↓↓

  圆的面积=∏rr

  =∏r2

  追问:课始我们的估算正确吗?

  求圆的面积一般需要知道什么条件?

  三、应用公式,解决问题

  1、基本训练,练练应用公式,求圆的面积。

  2、解决问题

  (1)出示例9,引导学生理解题意。

  要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

  (2)学生计算

  (3)交流,突出5平方的计算

  四、巩固练习

  1、练习十九1求课始出示的光盘的面积

  2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?

  五、这节课你有什么收获?你认为重点的

  地方有哪些?

  引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

  六、课堂作业

  补充习题51页2、3、4题

  拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

  圆的面积是多少平方厘米?

  反思:

  1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的`关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

  2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

  3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

《圆的面积》教学反思 13

  《数学新课程标准》指出:数学教学要为学生提供充分从事数学活动和交流的机会,促进他们在自主探索的过程中真正理解和掌握数学知识技能。在实际的教学活动中,教师经常感到组织的活动学生热闹地参与,但活动后,落实到说、写时,中下生尤其是学困生就参与不了学习活动了。针对此我设计了本节课的教学活动。

  本课时的教学设计,我特别注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的`面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。

  通过这节课的教学,我深深感受到在教学中,教师要摆正自己的位置,真正将自主探索权交给学生,为学生提供思考与探索的机会,使每一学生真正有效地参与活动,才能确保课堂教学的落实。

《圆的面积》教学反思 14

  本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和教师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程到达最优化。

  一、让学生多种感官参与学习,构成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

  如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的'特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的构成,到达了预想的教学目的。

  二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

  例如经过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件供给的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅仅概括归纳出面积计算方法,感悟到转化的思想在几何学

  习中的妙用。并且学生在抽象、概括、归纳推理过程中理解严密的逻辑思维训练,构成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和本事。从而顺利的想到圆的面积计算公式也能够这样推导。

  教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,经过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生经过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

  可是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应当改善的地方和努力的方向。

《圆的面积》教学反思 15

  从教十多年来,一路上的酸甜苦辣,只有心里明白。提起数学,学生常会在艰苦的思索,繁难的演算,复杂的逻辑推理联系起来,认为数学学习是一种枯燥的、辛苦的劳动。通过对新课程标准和新教材的学习和实践,我体会到:学生的思维不是凭空产生的,而是对外界环境刺激的积极反应。

  因此,教师应结合学生年龄与身心特征,创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材。

  特别是高年级数学教学,应紧密联系学生的生活实际,从学生的'生活经验和已有知识出发,创设各种情境,让学生动手操作,引导学生开展观察、操作、猜想、推理、交流等活动激发对数学的兴趣,树立学好数学的自信心。尽管六年级的学生在各方面都有自制力,但是,持久性注意的范围也有局限性,加上数学内容单一,常会感到枯燥乏味。如在教学《圆的面积》的时候,我先让学生课前准备一个圆,在教学的时候,让他们自己先想想圆的面积指什么部分,该怎么计算,然后,学生用自己手中的圆,动手摸,通过摸明白圆的面积。然后自学课本动手操作数学课本第127页小组合作完成,弄懂圆通过剪拼、发现近似长方形的长相当于圆周长的一半,宽相当于圆的半径这样,学生就很容易看出这个圆的面积(就是这个长方形的面积)。

  计算公式:圆的面积等于圆周率乘圆半径的平方。为学生提供了积极思考和操作实践的数学活动情境,使学生真正明白了圆面积计算的公式以及算理,充分调动了学生学习的积极性和主动性,使课堂教学生动有趣,轻松愉快。

【《圆的面积》教学反思 】相关文章:

圆的面积教学反思04-12

圆的面积的教学反思05-22

(优)圆的面积教学反思07-06

圆的面积教学反思15篇04-12

圆的面积教学反思13篇06-23

圆的面积教学反思(15篇)06-22

圆的面积的教学设计09-29

《圆的面积》教学设计06-06

《圆的面积》教学设计最新05-08