《植树问题》教学反思
作为一位刚到岗的人民教师,我们要在教学中快速成长,通过教学反思能很快的发现自己的讲课缺点,教学反思要怎么写呢?下面是小编整理的《植树问题》教学反思,仅供参考,欢迎大家阅读。
《植树问题》教学反思1
植树问题”原本属于经典的奥数数学内容,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
反思整个教学过程,我认为这节课在以下2个方面处理得比较好:
1、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自己动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的方法,并获得了更深层次的情感体验。
2、素材来源生活
在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的'能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
通过这一次磨课,我期望能透过自己一点一滴的积累和改善,提高自己的业务水平。
《植树问题》教学反思2
存在问题:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
二、细节的处理不够到位
要善于鼓励。轻松愉悦的课堂离不开学生的.积极投入,更离不开老师由衷的鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!
三、对学生估计过高
这节课还有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
《植树问题》教学反思3
植树问题是新人教版新课程标准实验教材五年级上册第七单元的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
植树问题教学侧重点:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本单元的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。通过教学,不仅是向学生渗透某种数学思想方法,而且借助内容的教学发展学生的思维,提高学生一定的思维能力。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的'小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就
是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多
1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。这单元教学充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
本单元教学不足的是:
一是没有举一反三的让学生进一步理解。
二是怎样让学生理解的更透彻,解题思路更清晰。功夫下的不深。 今后教学改进措施:
1、深钻教材,上课注重中差生,做到举一反三。
2、寻求学生最能理解的教学方法去教学。
3、课前一定要备学生。充分了解学情。
《植树问题》教学反思4
一、教学目标:
1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。
3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
二、教学重点:理解植树问题棵树与间隔数之间的关系。
教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。
三、教具准备:多媒体课件和未完成的表格。
四、教学过程:
课前准备:(多媒体放映牛顿和苹果的故事)
师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)
谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?
(一)、提出问题、引发思考、探究规律。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的'现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、整体感知、确定研究方向。
课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?
展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)
理解:“间隔”、“间隔数”、“棵数”。
(二)、小组合作,探究规律
1、提出问题。
课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?
学生的猜测可能有不同的结果:1000;1001;1002)
2、自主探究。
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
3、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
4、总结归纳。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
5、总结规律。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数 棵数-1=间隔数
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
(三)、点击生活
①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )
②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?
③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?
④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?
(四)、拓展延伸。
(课件出示世界著名数学问题)
师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?
早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)
十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)
进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)
(结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!
《植树问题》教学反思5
《植树问题》一课蕴含了许多数学思想方法,但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的策略。
课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的.兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。
本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。
《植树问题》教学反思6
今天上午我上了四年级数学植树问题结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:
一、创设情境,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的国家主席,国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。
在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
二、注重学生的自主探索,体验探究乐趣。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的'小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、关注植树问题爱护环境。
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1) 直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
四,改正措施
这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢各们老师指导。
《植树问题》教学反思7
在这节课的教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是间隔和棵数,求路的长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。本节课的主要目标是向学生渗透复杂问题从简单入手的.思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律,我设计了以下几个环节:
一、通过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学
生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。但是我感觉在本节课的教学活动中,师生间的沟通交流上还有待于进一步加强,有时过高的估计学生的学习基础和理解能力,造成站位过高的局面。今后的教学中要全面、深入的了解学生,充分做好更方面的准备。
《植树问题》教学反思8
《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的资料。数学广角作为人教版新增的资料之一侧重点是让学生在掌握知识的同时向学生渗透一些常用的数学思想和方法。如何把抽象的数学思想方法很好地渗透在环节在教学中使学生在“润物细无声”中深刻体验到数学思想方法的价值这是我在教学设计时着重思考和要解决的问题。一节课实施下来有成功之处也有不足之处。现做一个简单的小结与反思。
成功之处:
一、教学设计有深度、有厚度。
教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题——猜想验证——建立模型”不断数学化的过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。
对于植树问题的探究,不仅仅让学生透过画线段图、摆学具的方式自主探究、寻找,而且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的是哪一棵树。让学生不仅仅要知其然,还要知其所以然。
由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我明白了自己今后就应努力的方向。
二、敢于放手让学生去探究,体现学生的主体地位。
整堂课,我都比较注重学生的主体地位。因为我明白,只有学生自己想学、愿学,才能主动地学,并把学到的东西内化为自己的知识。因此对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生透过自己的猜测得到答案。当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自己的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较简单愉快了。
三、注重教学思想的渗透和学习方法的传授。
在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,透过比较10个间隔与2个间隔的线段图的难易,比较画一棵树和用
一个点表示一棵树的难易,让学生体会简化的思想。透过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的'传授,整节课都个性重视线段图的运用。
当然,这节课也有许多的不足之处,列举几条:
一、教学时间安排欠妥。有的教学资料没有来得及出示,有的资料讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习状况,心中没底。
二、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的状况下,所栽的棵数比间隔数多1),但是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有到达水到渠成的效果,没有把一一对应的思想与植树规律结合在一齐,没有很好地突破难点。
三、对学生评价这块显得潜力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。
四、数学课关键在于“说”,以说促思,以说引思,这样能够了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明明白就应让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学资料,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。
总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,
《植树问题》教学反思9
“植树问题”是四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。我所执教的内容是两端都不栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。这节课我依据学生的认知规律,设计了四个环节。
一、我通过让学生举手的`方法这一实例让学生感知点与间隔数。
二、以学生的手指为树两指之间为间隔数,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。四、多角度的应用练习,巩固和拓展学生对植树问题的认识。
我让学生实际观察体验点与间隔数之间的关系,由浅入深把复杂的东西简单化:让学生能够找到简单植树问题的规律“间隔数-1=棵数”(两端都不种)的规律,称热打铁让学生做练习巩固加深对两端多不栽的习题。一节课让学生自己发现问题自己去解决,学生的学习积极性高涨老师也省劲,在反思中,我找到了教学中捷径的办法。
《植树问题》教学反思10
“植树问题”是人教版新课程标准实验教材五年级上册第七单元数学广角中的问题,而这个内容以前是安排在四年级下册。在植树问题中,主要是教会学生如何思考,如何分析问题并且将这些知识能潜移默化的给大家以思考路线。
教材将植树问题分为三个层次:两端都栽、两端不栽和环形(一端不栽)。教学过程中需向学生渗透数形结合、探究推理和一一对应的数学思想,同时使学生将这一数学问题拓展,感知到这是一种数学额模型,可以提高学生的思维拓展能力。
我这节课主要解决的是两端都栽的植树问题,通过观察、操作及交流活动,探索并认识将问题探究推理的方式,并能将这种认识应用到解决类似的实际问题之中。运用数形结合的思想,培养学生借助图形解决问题的意识。并借助图形,利用一一对应的规律来解决实际问题。反思整个教学过程,我认为本节课有以下几点做得比较好:
首先,设计层次分明。整节课设计基于学生的实际情况,课前通过猜谜语的方式,吸引学生的注意力,然后通过探索手指数与间隔数的关系,人民大会堂前柱子数与间隔数之间的关系。通过这两个问题推理探究到新知识——植树问题。给与学生一个较大的数据,不能一眼就看出结果,但是能通过猜想假设,并运用一一对应的这种关系来得到对于两端都栽的植树问题得到植数棵树比间隔数多一。可是在这其中就包含了对于植树这一类的数学模型我们可以通过简化的线段图来简化思考过程,淡化图形意识。毕竟对于10多岁的小孩子,他们的潜意识还是以完整的图形思维为主,为了培养他们简化思考过程。其次,联系生活进行拓展思维。当学生体验到植树问题,但如何去将这种模型推广化就值得思考!体验是学生从旧知向隐含的'新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从植树、路队、楼房、锯木等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。
这节课虽然层次分明,联系实际,但问题仍然存在。一、学生认知起点与知识结构的逻辑理解性存在差异,无法将规律运用于求路长的问题。只有部分学生掌握,这恰恰说明学生能找规律不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数—1,路长=间隔数×间隔长”知识的扩散。二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平,可以利用实例来帮助学生学习。
对于自身的学习还有待加强,对于知识的拓展,像“数学史上有个20棵树植树问题”!我们不能仅仅停留在知识的表面,而要试着走出去,并在教学中体现出来,引发学生的思考、探究、创新。
《植树问题》教学反思11
本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取其中的数学模型,然后再用发现的规律來解决生活中的简单实际问题。植树问题通常是指沿着一定的路线植树,这条线段的总长度被树平均分为若干段(间隔),由于路线的不同、植树的要求不同、路线被分成的段数(间隔数)和植树的棵树之间的关系也就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等。这些问题中都隐藏着总数与间隔数之间的关系。
在植树问题中,植树的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可能有不同的`情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为一条线段上的植树问题中的一端栽另一端不栽的情况。
成功之处:
分类教学,抓住教学重难点,避免出现知识的空档。在教学中,我通过教学例1的两端都栽的情况。这类问题,学生对于求棵树比较容易理解。但是对于在公路的两旁栽树,学生往往容易出错,因此在教学的过程中,多出一些在两旁栽树的情况,让学生能够注意。另外,在这个教学中还注意让学生逆向思考,如:在学校门前小路的两边,每隔5米放一盆菊花(两端都放),从起点到终点一共放了20盆。这条小路长多少米?提醒学生逆向思考问题,也就是要先求一旁小路放多少盆,即20÷2=10(盆),然后再求间隔数,即10-1=9(个),最后求小路的全长,即9×5=45(米)。通过这样的训练,可以使学生不仅知其然,更知其所以然,还能培养学生逆向推理的能力。学生以后再见到难题,可以借助方程顺向思考问题,也可以逆向推理思考。经过这样的训练,学生就不至于感觉数学的困难了。这个单元容易出现的题目就是敲钟问题、锯木头问题、每个角都摆花的问题,这些问题可以一类一类地教学,把每个问题夯实,再进行综合训练,效果会更好。在这些问题中,尤其类似这样的问题要注意教学,如要在三角形花坛的边上种牡丹花,每边种10棵,可以怎样种?最少需要种多少棵牡丹花?这种类型题学生就要有多种考虑,一种是三个角都不种,每边种10棵,需要种10×3=30(棵);第二种是只种1个角,其他两个角不种,就需要种10×3-1=29(棵),第三种是种兩个角的情况,需要10×3-2=28(棵),第四种是种三个角的情况,需要10×3-3=27(棵),通过这样的教学可以避免直接教学课本习题中的棋子问题,学生就可以弄清楚为什么要用每边的数量乘边数候后还要减4。
在教学例1两端都栽的情况,也可以顺势教学其它情况特别是两端都不栽,除了画线段图理解之外,也可以让学生解释为什么要用间隔数减1,实际上中两都栽的情况中间隔数加1再减2,所以得到棵数等于间隔数减1。这样再教学只栽一端时,学生又可以在两端都不栽都情况下间隔数减1加1,就可以得到棵树等于间隔数,由此类推,学生更容易理解这三种情况之间的联系,不至于学一种记忆一种。
不足之处:
学生在学习例题时学得很好,一到接触到不同类型的植树问题就不知所措,还是存在搞不清哪种植树问题的情况。
再教设计:
在教学中,还是继续采取分类教学,既注重对分类教学的讲解,还要注意逆向思维的训练。
【《植树问题》教学反思】相关文章:
植树问题教学反思10-01
《植树问题》教学反思07-03
植树问题教学反思05-18
《植树问题》教学反思08-14
植树问题数学教学反思06-07
(优秀)植树问题教学反思07-06
《植树问题》教学反思(优秀)07-23
植树问题教学反思(15篇)06-13
《植树问题》教学反思15篇07-07
植树问题教学反思15篇06-12