当前位置:范文派>教学范文>教案>平行四边形教案

平行四边形教案

时间:2023-05-18 13:22:07 教案 我要投稿

实用的平行四边形教案范文汇编七篇

  作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?以下是小编为大家收集的平行四边形教案7篇,仅供参考,欢迎大家阅读。

实用的平行四边形教案范文汇编七篇

平行四边形教案 篇1

  教学目标:

  1、在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

  2、在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、感受图形与生活的联系,感受平面图形的学习价值,进一步发展对空间与图形的学习兴趣。

  教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。

  教学难点:引导学生发现平行四边形的特征。

  教学准备:实物投影。

  教学过程:

  一、创设情境、导入新课。

  1、出示长方形,谈话:老师手里问成的是什么图形?

  学生:长方形

  教师移动成平行四边形,谈话:仔细看,现在围成的是什么图形?

  学生:平行四边形

  揭题:今天我们进一步认识平行四边形(揭题)

  [从学生熟悉的长方形渐变成平行四边形,既关注学生的原认知,又符合学生的认知规律,同时为后面发现平行四边形边的特点和比较长方形、平行四边形的异同点提供了铺垫]

  2、教师谈话:同学们在生活中见到过平行四边形吗?

  生1:我们校门口的移动门上有平行四边形;

  生2:一种衣架是平行四边形;

  生3:我家晒衣服的伸向外面的栏杆是平行四边形的;

  生4:看,墙上那个图上有平行四边形;

  谈话:只要你善于观察生活,其实生活中经常能看到平行四边形。出示挂图(电动移门、楼梯扶栏、篱笆),你能从中找出平行四边形吗?

  学生上台指。

  [通过让学生在生活实践中找平行四边形,比划出平行四边形的样子,挖掘学生对平行四边形的潜在表象认识,建立初步的感性表象。]

  二、实践操作、探究特点。

  1、谈话:同学们都认识了平行四边形,闭上眼睛在小脑袋里想一想平形四边形是什么样子的?好,脑子里有平行四边形样子了吗?如果老师让你做一个平行四边形,你准备怎么做?

  学生思考。

  2、学生用手头材料做,做完后交流:我是怎么做平行四边形的?教师巡视指导。

  3、谈话:谁愿意上台来展示自己是怎么做的?

  生1:我用钉子板围;

  生2:我用小棒摆的;

  生3:我用方格图上画;

  生4:我是直接折的;

  生5:我是用剪刀剪的;

  4、谈话:同学们想出的办法真多,请同学们观察一下自己面前的平行四边形,它的边有什么共同特点呢?

  小组交流:有什么发现?

  5、交流汇报:

  生1:我们小组觉得上下两条边可能平行;左右两条边可能平行。 (师板书:互相平行)

  师:你是怎么发现的?

  生1:我是看出来的,上下两条边延长后不相交;

  师:其他小组发现这个特点了吗?你有办法证明吗?

  生2:我们的平行四边形上下两条边延长后也不相交,我可以用画平行线方法证明,左右也一样;

  师明确:上下两条边称为一组对边,左右一组对边,可以称两组对边。(板书:两组对边)

  生3:我们可以用三角尺平移的办法证明对边是平行的。

  小组讨论后提问并板书:两组对边互相平行。

  生3:我们小组发现两组对边都是相等的?

  师:你们听明白他的意思了吗?

  生4:就是上下两条边相等,左右两条边相等。

  师规范语言:你指的是两组对边分别相等,是吗?(板书)

  谈话:其他小组发现这个特点了吗?你有办法证明吗?

  生5:上下两个小棒长度相等,左右长度也相等;

  生6:我上下拉出的都是3格,左右是2格,都是相等;

  小结:通过以上研究,我们已经知道了平行四边形的特点:两组对边分别平行且相等。

  5、教师在钉子板上围想想做做1,判断:哪些图形是平行四边形,为什么。

  生1:1、3、4是平行四边形,因为他们符合平行四边形特点两组对边分别平行且 相等。

  生2:2不是,因为它上下对边平行不相等,左右对边相等又不平行,所以不是平行四边形。

  生3:2是梯形,所以不是平行四边形。

  [学生经历制作平行四边形的过程,讨论、探究、发现平行四边形边的特点,学生交流自己的验证方法,并用发现的特点去判断图形是否平行四边形。经历制做研究发现应用的过程,符合学生的认识规律。]

  三、认识高、底。

  1、谈话:出示一张平行四边形的图,介绍:这是一个平行四边形,上下对边是一组平行线,你能量出两条平行线之间的距离吗?应该怎么量?把你量的线段画出来。

  学生自己尝试后交流。教师指导明确平行线之间的垂直线段就是平行线之间的距离。

  2、老师刚才发现,大家画的垂直线段位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

  老师示范画一组的垂直线段,说明:在平行四边形里,一组对边之间的垂直线段就是平行四边形的高,而对边就是底。

  3、学生自主看书上P44页,说一说:什么是平行四边形的高?什么是底?

  [由复习平行线之间距离入手,让学生动手量、画,然后明确平形四边形高、底的含义,注重链接知识的最近发展区,符合学生的认知规律]

  4、师出示实物平行四边形,指一指两组底边上的高。

  5、找出底边上的高:(图略)

  6、做书上试一试,量出底和高分别是多少?

  (1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。

  7、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角 标记。如果有错误,让学生说说错在哪里。

  [平行四边形的高、底的认识是本课教学的难点,通过量平行线间的距离,使学生逐步认识平行四边形的高和底。在扎实认识了高和底的基础上,让学生经历指高、找高、量高、画高的过程,并通过变式,加深对知识点的掌握。]

  四、练习提高。

  1、谈话:课一开始,老师将长方形一拉变成平行四边形,现在老师再轻轻一移又变成了长方形,同学们观察一下,长方形和平行四边形哪里变了,哪里没变,讨论一下它们有什么相同点和不同点呢?

  学生小组交流,集体汇报。

  生1:相同点是它们的对边都是平行且相等;

  生2 :不同点是长方形的角都是直角,而平行四边形的角不是直角;

  生3:平行四边形是长方形变形后产生的;

  2、教师:平行四边形不改变边长的情况下可以改变成不同形状的平行四边形,这就是平行四边形的不稳定性。请同学看书上P45页你知道吗?

  提问:说一说,生活中平行四边形的这种特点在哪些地方有应用?

  生1:有种可以弹的那种拳击套;

  生2:晒衣服的'衣架;

  生3:捕鱼的网;

  五、实践游戏:

  1、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。

  2、想想做做3,用七巧板中的3块拼成一个平行四边形。

  出示,你能移动其中的一块将它改拼成长方形吗?

  3、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从 哪里锯开呢?找一张平行四边形纸试一试。

  [练习设计既富有情趣,又让学生在活动中体验到所学平行四边形知识的价值,再次感悟到数学知识与现实生活的密切联系。]

  六、全课小结

  今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究的?

  [小结简明扼要,既突出本节课的知识重点,又提升了学生的认知策略。]

  教学反思:

  一、 激发原认知关注学生知识储备。

  用发展的眼光来设计学习活动,让学生在探究中亲历知识形成的过程,远比让学生直接但却被动地获取现成知识结论要更加具有深远的意义和影响,学生的观察、猜想、探索和创新等其他各方面能力都能得到有效地开发和锻炼。纸上得来终觉浅。在体验中自身感悟的东西理解深刻、印象久远。对平行四边形的特征研究,我本着让学生亲历知识的形成过程的方法,让学生依据探究内容自己有序探究,自己量一量、比一比、想一想,从而得出平行四边形的特征,学生自然也得到了有效地学习。

  二、重视过程把探究机会让给学生。

  《课标》在基本理念中指出:数学教学活动,必须建立在学生的认知发展水平和已有的知识经验基础上,为学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握数学知识。本课正是实践这种理念的一个典范,如我在教学中提供长短不一的塑料棒和钉字板,让学生根据印象中的平行四边形制作平行四边形,自主选择学具围成各种各样的平行四边形,其间学生既能采用最简单的4根塑料棒来围成,还有用钉字板围。操作的成功不但让学生对平行四边形原有认知表现外显,更让学生为下面进一步观察平行四边形边特点提供了素材,最重要的是提升学生灵活应用数学解决实际问题的策略与能力,并从中得到成功的体验,树立学习的信心。

平行四边形教案 篇2

  一、教学内容:P72

  二、教学目标:

  1、引导学生直观地认识平行四边形。

  2、培养学生动手操作和实践能力。

  三、教学准备:

  长方形框架、七巧板

  四、教学过程:

  (一)复习导入

  (二)探索新知

  1、做一做

  (1)教师演示:出示长方形框架

  这是什么图形,然后拉动,变成新形状。提示学生认真观察。

  (2)学生动手操作,做一做。

  (3)认识平行四边形

  A、认识平行四边形实物(观察新图形)

  B、认识平行四边形平面图

  2、想一想

  平行四边形与长方形的`联系:对边相等,四个角不是直角,有的是锐角,有的是直角。

  3、说一说

  说一说平时见到的平行四边形

  4、画一画

  5、拼一拼(用七巧板)

  (三)全课

  今天我们学习了什么知识,用什么方法认识平行四边形。

  (四)作业

  在现实中寻找平行四边形

平行四边形教案 篇3

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  教学重点:运用所学知识解答有关平行四边形面积的应用题。

  教学过程:

  一、基本练习

  1.口算。(练习十六第4题)

  4.90.75.4+2.640.250.87-0.49

  530+2703.50.2542-98612

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  ⑴底12米,高7米;

  ⑵高13分米,第6分米;

  ⑶底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1.95公顷,

  再求共收小麦多少千克:70001.95=13650千克

  ⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  1.6厘米

  2.5厘米

  ⑴你能找出图中的两个平行四边形吗?

  ⑵他们的.面积相等吗?为什么?

  ⑶生计算每个平行四边形的面积。

  ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。

  28平方米

  7米

  分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  练习十六第7题。

  四、作业

  练习十六第5、8、9、11题。

平行四边形教案 篇4

  【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等)

  【回顾与思考】:

  活动一:

  准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.

  (1)你得到了怎样的四边形?与同伴交流一下

  (2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?

  (3)平行四边形的定义: 的四边形叫做平行四边形.

  平行四边形 连成的线段叫做对角线

  如图,四边形ABCD是平行四边形,

  记作” ”

  活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么?

  (2)平行四边形的性质:平行四边形的对边

  平行四边形的对角

  几何语言:

  ∵四边形ABCD是平行四边形(已知)

  ∴AB= ,BC= ( )

  ∠A = ,∠B = ( )

  【知识应用】:

  1. □ABCD中,AB=3,BC=5,则AD= CD= 。

  2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。

  3. 如图:四边形ABCD是平行四边形。

  (1)边AB、BC的长度

  (2)求∠D、∠C度数。

  【当堂反馈(小测)】:

  1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.

  2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;

  3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.

  4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.

  5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的'长度。

  6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数

  【巩固提升】:

  1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。

  2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。

  3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。

  4、 在□ABCD中,∠A=65°,则∠D的度数是 ( )

  A. 105° B. 115° C. 125° D. 65°

  5、在□ABCD中,∠B比∠A大20°,则∠D的度数是 ( )

  A. 80° B. 90° C. 100° D. 110°

  6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )

  A、88°,108°,88°B、88°,104°,108°

  C、88°,92°,88° D、88°,92°,92°

  7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( )

  A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1

  8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。

  9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数

  10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?

平行四边形教案 篇5

  一、内容和内容解析

  1.内容

  平行四边形对角线的性质.

  2.内容解析

  这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.

  教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

  基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

  二、目标和目标解析

  1.目标

  (1)探究并掌握平行四边形对角线互相平分的性质.

  (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

  2.目标解析

  达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

  达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

  三、教学问题诊断分析

  本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

  基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.

  四、教学过程设计

  引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

  1. 引入要素 探究性质

  问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

  师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

  设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.

  问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

  师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

  你能证明上述猜想吗?

  教师操作投影仪,提出下面问题:

  图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

  学生合作学习,交流自己的思路,并讨论不同的`验证思路.

  教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

  师生归纳整理:

  定理:平行四边形的对角线互相平分.

  我们证明了平行四边形具有以下性质:

  (1)平行四边形的对边相等;

  (2)平行四边形的对角相等;

  (3)平行四边形的对角线互相平分.

  设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

  2.例题解析 应用所学

  问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

  师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

  变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

  设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

  3.课堂练习,巩固深化

  (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

  (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

  设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

  4.反思与小结

  (1)我们学习了平行四边形的哪些性质?

  (2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

  (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

  5.布置作业

  教科书P49页习题18.1 第3题;

  教科书第51页第14题.

平行四边形教案 篇6

  教材简析:

  1.紧密联系学生已有经验,通过丰富的学习活动,帮助学生直观认识常见的平面图形。教材通过折正方形纸,让学生直观认识三角形,把两个完全相同的三角形拼成一个平行四边形,直观地认识平行四边形。这样安排,既符合低年级学生的认知特点,也有利于他们主动地认识平面图形。

  2.把图形的变换,图形间的联系放在重要位置。教材只要求学生直观认识三角形、平行四边形,没有深入研究它们的特征。但是教材安排了许多折、剪、拼的活动,比较多地将一种图形变换成另一种图形。这些操作活动,能使学生感受图形之间的联系,有利于培养学生空间观念和解决问题的能力,有利于发展学生的数学思维。

  3.教材设计了一些开放性问题,如在钉子板上围三角形、平行四边形,围成的这些图形可以有大有小,有不同的'位置,用一个长方形剪成两个完全一样的三角形拼一拼,可以拼成多种图形。这些题能激起学生独立探索的精神,相互合作的愿望,有利于改善教学方式,培养学生的创新意识。

  教学目标:

  1.通过把长方形成或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道三角形和平行四边形的名称,并能识别三角形、平行四边形,初步了解三角形、平行四边形在日常生活中的应用。

  2.在折图形、剪图形、摆图形、拼图形等活动中,使学生体会图形的变换,发展对图形的空间想像能力。

  3.使学生在学习活动中积累对数学的兴趣,增强与同学的交往、合作的意识。

  教学重点与难点:从三角形、平行四边形实物中抽象出平面图形,并让学生正确认识它们。

  教具准备:长方形、正方形纸各一张,不同形状的三角形、平行四边形若干个,剪刀一把,钉子板和20页上半页的图片。

  学具准备:长方形纸、正分形纸、直角三角形纸若干张、剪刀、学具盒。

  教学过程:

  一、游戏激趣,创设情境

  小朋友,你们喜欢折纸吗?你们想折吗?今天老师就和你们一起玩折纸游戏好吗?

  二、动手操作,探索新知

  1.折一折,认识三角形

  (1)教师手中拿的是什么图形的纸?(正方形纸)请小朋友们拿出和老师手中一样的正方形纸,你能把这张正方形的纸对折成完全一样的两部分吗?(教师巡视,如有学生对对折不理解要及时指导。)

  (2)展示成果。

  哪位小朋友愿意上来说一说你是怎样折的?

  ①对折成两个完全一样的长方形。(这是我们已经认识的)

  ②对折两个完全一样的三角形。(贴出图形)问:这是什么图形?(板书:三角形)

平行四边形教案 篇7

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  【教学目标】

  1、通过操作和讨论掌握平行四边形和梯形的特征。

  2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。

  3、注意培养学生的空间观念和想像力。

  【教学重点】

  通过操作和讨论掌握平行四边形和梯形的特征。

  【教学难点】

  了解平行四边形与长方形和正方形的关系。

  【教学准备】

  教师准备:直尺,三角板,课件。

  学生准备:直尺,三角板,白纸,铅笔。

  【教学过程】

  一、通过观察,加深学生对四边形特点的了解。

  1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。

  (1) (2) (3)

  (4) (5) (6)

  师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?

  生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。

  师:你知识三角形和四边形有什么特点吗?

  生1:三角形有三条边,三个角。

  生2:四边形有四条边,四个角。

  师:对,今天我们来学习两种特殊的四边形。

  [设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]

  二、通过观察讨论,让学生发现平行四边形和梯形的特点。

  1、通过让学生观察讨论,认识平行四边形和长方形的定义。

  出示课件:在电脑上出示一组四边形。

  (1) (2) (3)

  (4) (5) (6)

  师:电脑上的这组图形都是什么图形?

  生:四边形。(有前面的知识作铺垫,学生很容易回答出来)

  师:你能把它们分类吗?

  生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)

  生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。

  师:你能说说把图(1)、(3)、(6)分为一组道理吗?

  生1:因为图(1)、(3)、(6)有两组平行线。

  师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)

  生:确实有两组平行线。

  师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)

  师:谁能说说把图(2)、(4)、(5)分为一组的道理?

  生2:它们只有一组平行线。

  师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)

  2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。

  师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?

  生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。

  生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。

  生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,

  师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。

  师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。

  师:你们能说说长方形和正方形特殊的`地方吗?

  生:它的四个角都是直角。

  师:对,这说是平行四边形特殊的地方。

  (通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)

  3、进一步认识平行四边形和梯形的特点。

  师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)

  生1:我发现平行四边形对边是相等的。

  师:请同学们用尺子量一量。

  生2:我发现平行四边形的对角相等。

  师:请同学们用量角器量一量。

  师:这两位同学的发现正确吗?

  生:完全正确。

  师:梯形有这些特点吗?请同学们量一量。

  生:没有,梯形的对边不相等,对角也不相等。

  (通过学生的操作,进一点了解平行四边形和梯形的特点)

  师:下面我们可以用图表表示平行四边形和梯形的特点。

  图形对边平行对边对角

  平行四边形有两组对边平行相等相等

  梯形只有一组对边平行不相等不相等

  (用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)

  三、认识四边形之间的关系。

  师:同学们,平行四边形和梯形是不是四边形?

  生:是。

  师:我们可以用这个图来表示:

  平行四边形

  梯形

  四边形

  师:长方形和正方形应怎样表示呢?

  生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。

  师:对,应这样表示:

  平行四边形

  长方形 梯形

  正方形

  四边形

  四、巩固练习。

  1判断下面那些图形的平行四边形,那些图形的梯形。

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (7)

  (使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)

  2填空。

  1、两组对边( )的四边形叫做平行四边形。

  2、( )的四边形叫做梯形。

  3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。

  4、平行四边形和梯形都是( )形,它们都有( ),( )个角。

  (通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)

  五、全课小结。

  师:今天你们学到了什么?

  生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。

  [设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]

【平行四边形教案】相关文章:

《认识平行四边形》教案03-30

平行四边形教案四篇05-12

【必备】平行四边形教案四篇05-15

平行四边形教案汇总10篇05-16

关于平行四边形教案7篇05-15

【推荐】平行四边形教案4篇05-17

【精品】平行四边形教案4篇05-17

关于平行四边形教案三篇05-18

平行四边形教案模板七篇05-16

实用的平行四边形教案汇总五篇05-17