【精华】平行四边形教案4篇
作为一名老师,通常会被要求编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。写教案需要注意哪些格式呢?以下是小编帮大家整理的平行四边形教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
平行四边形教案 篇1
教学要求:
1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。
2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。
3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。
教学重点:
在制作中发现平行四边形的基本特征。
教学难点:
引导学生发现平行四边形的特征。
教学过程:
一、生活引入
1.出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。
2.师:生活中,你还在哪些地方见过平行四边形呢?(指名说)
3.师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题)
二、操作探究
1.师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,在小组里说一说你的方法。
2.师:谁来汇报?你选了那种材料?是怎么制作的'?(让学生依次在投影上演示,并介绍制作过程)
3.讨论:刚才同学们用不同的材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢?
4.下面,请每个小组的同学根据老师的提示进行讨论。
小组活动:
(1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的特点?组长记录在练习纸上。
(2)用什么方法去验证你们的猜想?怎样操作?
(3)通过观察,操作,验证,你们的结论是什么?
5.师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书)
6.师:同学们刚才通过观察,操作,验证了平行四边形边的特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说。
7.师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的。
三、探索平行四边形与长方形的相同点与不同点。
1.师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。小组操作。
2.指名汇报,你是怎样剪的?谁来说说它的特征是什么?
3.刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?
四、小结,并认识平行四边形的不稳定性。
1.通过这节课的学习,你对平行四边形有哪些认识?
2.平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。
平行四边形教案 篇2
一、教学目标:
1.使学生掌握平行四边形的意义及特征,了解它的特性。
2.通过观察、动手,培养学生抽象概括能力和初步的空间观念。
3.渗透事物是相互联系的辩证唯物主义观点。培养学生观察和认识周围图形的兴趣和认识。
二、教学重点:平行四边形的意义。
三、教学难点:抽象概括平行四边形的意义。
四、教学过程:
(一)、老师出示一个长方形框架.
1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?
(这个图形不是长方形了,因为它的四个角不是直角)
我们把这样的图形叫做平行四边形.在黑板右上角贴出一个平行四边形.
2.请同学们观察:黑板上还有哪些平行四边形?
(分类中的“其它四边形”都是平行四边形)老师把黑板上的“其它四边形”改写成“平行四边形”)
问:同学们平时见过平行四边形吗?请举例来说.(有一种防盗网上的图形、篱笆上的图形,有的编织图案)
3.平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)
(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)
今天,我们又认识了一个图形——平行四边形.
(二)通过活动,再次感知平行四边形。
1. 小朋友看过魔术表演吗?咱们来变个魔术,请打开1号纸袋。看一看,里面有什么?(6根硬纸条,4个图钉)
师:咱们要围一个长方形框,得用几根硬纸条?4根什么样的硬纸条?请小组的同学讨论选出来。
学生讨论筛选后,教师提问:你们选了什么样的?为什么这样选?
最后小组合作用图钉固定出长方形框。
围好后,请小朋友推一推,拉一拉,看图形变了没有?(学生操作)
在日常生活中我们经常见到这种图形。请看屏幕。(课件显示“纺织图案”、“楼梯扶手”、“篱笆”,并闪动其中的几何图形再抽象出来。)
2. 学生自己发现平行四边形与长方形、正方形的共同点。观察后交流。
3. 分组操作、研究平行四边形的特征。
(1)回忆研究长方形、正方形特点的方法。(量一量、折一折、比一比)
(2)打开2号纸袋(里面有两张平行四边形纸片),用刚才的方法,也可以想别的办法,也可以观察变平行四边形框的'过程,小组讨论平行四边形4条边和 4个角的特点。
(3)分组交流,教师小结。
4. 辨认平行四边形。
完成课本练习三十九第2题,指生订正并说出理由。
(三)巩固练习
1、判断题:
(1)长方形、正方形和平行四边形都是四边形.( )
(2)四个角都是直角的四边形一定是正方形.( )
(3)一个四边形,它的四条边相等,这个四边形一定是正方形.( )
(4)对边相等的四边形都是长方形.( )
(5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形.( )
2.思考题:
有两个大小一样的长方形,长都是4分米,宽都是2分米.
(1)把这两个长方形拼成一个正方形,你是怎样拼的?
(2)把这两个长方形拼成一个大的长方形,它的长是多少?宽是多少?你是怎样拼的?
(四)全课总结
通过今天的学习你有什么收获?谈一谈。
教学反思:
在整节课的设计中,我注重将游戏、活动引入教学。如在导入新课时,创设问题情境,利用教具有熟悉的长方形一拉动变成了要学的内容平行四边形,既复习了旧知识长方形,又很自然地过渡到新知识,使学生体会到数学知识都有内在联系。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。
在教学设计中,我注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的空章。然后通过学生的动手操作,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的欲望。通过"变魔术"引出平行四边形,激发了学生的观察兴趣,从而使学生认识平行四边形的特性,在轻松学习中学习数学。
教学中感到不足的是设计的练习不很多,题的类型不够新颖,在练习的设计中,应能引起学生的兴趣,使学生乐于探究。
教学反思:
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、验证、推理与交流等数学活动。因此,本节课我让学生把自己制作的长方形框架拿出来拉动后可以得到一个平行四边形引入新课,激起探究的兴趣。在探究平行四边形的特征时,引导学生小组讨论:一个平行四边形和一个三角形的框架,比较一下,它们之间有什么不同。再引导学生观察平行四边形,归纳、概括平行四边形的特征。让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。当学生通过动手动脑,在探索中初步发现平行四边形的特征。学生学得非常积极主动:数学教学活动要帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学思想和方法,因此在数平行四边形时,引导学生有序地进行观察,主动探究规律,渗透有序思维的方法。整节课从实际出发运用现代教学手段,突破了教学的难点。反思整个教学过程,我认为教学的益处在于有效地引导了学生在活动中享受到学习的乐趣,体验到合作、交流的成功,从而大大提高了教学效果。 不足:课中的练习量还是不够,可以多做些练习突出平行四边形的特征。
平行四边形教案 篇3
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
一、导入新课
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的'底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
您现在正在阅读的五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=ah
说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的填空。
7、验证公式
学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长宽 平行四边形的面积=底高
S=ah S=ah或S=ah
平行四边形教案 篇4
教学目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.索并掌握平行四边形的性质,并能简单应用;
3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件
教学过程
第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)
1.小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的'三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)
小组活动3:
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)
实践探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵四边形ABCD是平行四边形
∴AD//BC,AB//CD
∴∠1=∠2,∠3=∠4
∴△ABC和△CDA中
∠2=∠1
AC=CA
∠3=∠4
∴△ABC≌△CDA(ASA)
∴AB=DC,AD=CB,∠D=∠B
又∵∠1=∠2
∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB
第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)
1.活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1如图:四边形ABCD是平行四边形。
(1)求∠ADC、∠BCD度数
(2)边AB、BC的度数、长度。
练2四边形ABCD是平行四边形
(1)它的四条边中哪些线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
归纳:平行四边形的性质:平行四边形的对角线互相平分。
第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)
活动内容
师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
考一考:
1.ABCD中,∠B=60°,则∠A=,∠C=,∠D=。
2.ABCD中,∠A比∠B大20°,则∠C=。
3.ABCD中,AB=3,BC=5,则AD=CD=。
4.ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。
布置作业
课本习题4.1
A组(学优生)1、2
B组(中等生)1、2
C组(后三分之一生)1、2
【平行四边形教案】相关文章:
《认识平行四边形》教案03-30
平行四边形教案五篇05-25
【精选】平行四边形教案4篇05-23
平行四边形教案四篇05-12
平行四边形教案八篇05-27
【精选】平行四边形教案三篇05-28
关于平行四边形教案9篇05-22
实用的平行四边形教案9篇05-20
【推荐】平行四边形教案四篇05-24
【精华】平行四边形教案四篇05-24