当前位置:范文派>教学范文>教案>《圆锥的体积》教案

《圆锥的体积》教案

时间:2023-08-12 06:59:07 教案 我要投稿
  • 相关推荐

《圆锥的体积》教案

  作为一名教师,有必要进行细致的教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?以下是小编精心整理的《圆锥的体积》教案,欢迎阅读与收藏。

《圆锥的体积》教案

《圆锥的体积》教案1

  教学内容:教材第16~19页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

  教学重点:掌握圆锥的特征。

  教学难点:理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1.说出圆柱的体积计算公式。

  2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的'特点。

  (1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积=底面积高

  用字母表示:V=Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、巩固练习

  1.做练习三第2题。

  学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

  2.做练习三第4题。学生书面练习,小组交流,集体订正。

  四、课堂小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  五、课堂作业

  练习三第3题及数训。

  六、板书:

  圆锥

  圆锥的特征:底面是圆,

  侧面是一个曲面,展开是一个扇形。

  它有一个顶点和一条高。

  圆柱的体积=底面积高

  圆锥的体积=圆柱体积

  圆锥的体积=底面积高V=Sh

《圆锥的体积》教案2

  目 标:

  1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。

  2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。

  3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。

  重 点:掌握圆锥体积的方法

  难 点:公式的推导

  准 备:沙,圆柱教具若干个,圆锥一个,其中要有一组等底等高的圆柱和圆锥

  教 程:

  一、准备

  同学们,我们以前研究过一些立体图形,如长方体,正方体,圆柱体,它们的体积各是怎样计算的呢?

  二、诱发

  课件演示稻谷丰收的景象。师述:稻谷丰收了,农民伯伯忙着收割稻谷,他们把收好的稻谷堆成一个这样的图形(圆锥形谷堆),同学们你们认识吗?你能算出这堆稻谷的体积吗?它和圆柱的体积有什么联系呢?这就是我们这节课要学习的内容。

  三、探究释疑

  1、初次猜想

  ⑴根据我们所学过的内容,请同学们猜一猜,圆锥的体积应该怎样计算?

  ⑵圆锥的体积是否能用“底面积×高”来计算呢

  ⑶学生通过观察,发现“底面积×高”不是圆锥的体积,而是与它等底等高的圆柱的体积。

  2、再次猜想

  ⑴通过模型演示,

  ⑵根据学生回答,从而得到如下结论:

  圆锥的体积 = ×圆柱的体积(等底等高)

  3、分组实验进行验证

  ⑴让学生用三个不同的圆柱体和一个圆锥(其中必有一组等底等高的圆柱和圆锥)来进行实验。

  ⑵分组讨论,分组汇报

  圆锥的体积 = ×圆柱的体积(等底等高)

  用字母表示:V=1/3Sh

  4、联系实际,进行运用

  ⑴出示例1,学生尝试练习,集体订正。

  ⑵教学例2、课件出示:

  麦收季节,张小红把她家收的小麦堆成一个近似圆锥的麦堆,又给出测量的数据,让学生看图编一道求小麦重量的应用题。

  编好后,分组讨论计算

  学生自己列式计算,集体订正

  四、转化

  1、基础题

  ⑴下面有四组图形,你能根据每组图形中左图的体积,求出右图的.体积吗?为什么?

  24立方米 9立方米 12立方米

  ⑵一个圆锥的底面直径是4厘米,高5厘米,它的体积是多少?

  2、提高题

  有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆柱体,被削去的体积是多少?

  3、思考题

  把一个棱长6厘米的正方体铁块和底面直径、高都是6厘米的圆柱形铁块,熔铸成一个直圆锥体,如果这个直圆锥体和圆柱的底面大小一样,这个直圆锥体的高是多少厘米?(得数保留整数)

  五、应用

  1、 基础题:P44-T3、4

  2、 提高题:P45-T10

  3、 思考题:P45-T11、12

《圆锥的体积》教案3

  【教学内容】

  圆锥的体积(1)(教材第33页例2)。

  【教学目标】

  1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

  2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

  【重点难点】

  圆锥体积公式的推导过程。

  【教学准备】

  同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

  【情景导入】

  1、复习旧知,作出铺垫。

  (1)教师用电脑出示一个透明的圆锥。

  教师:同学们仔细观察,圆锥有哪些主要特征呢?

  (2)复习高的概念。

  A、什么叫做圆锥的高?

  B、请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  2、创设情境,引发猜想。

  (1)电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)

  (2)引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

  【新课讲授】

  自主探究,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。

  出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?

  (1)小组实验。

  A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)

  B、同组的.学生做完实验后,进行交流,并把实验结果写在黑板上。

  (2)全班交流。

  ①组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:

  A、圆柱的体积正好等于圆锥体积的3倍。

  B、圆柱的体积不是圆锥体积的3倍。

  c、圆柱的体积正好等于圆锥体积的8倍。

  D、圆柱的体积正好等于圆锥体积的5倍。

  E、圆柱的体积是等底等高圆锥体积的3倍。

  f、圆锥的体积是等底等高圆柱体积的。

  ②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  ③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?

  圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。

  (3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?

  (4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?

  (5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)

  【课堂作业】

  完成教材第34页“做一做”第1题。

  先组织学生在练习本上算一算,然后指名汇报。

  答案:13×19×12=76(cm3)

  【课堂小结】

  教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。

  【课后作业】

  1、完成练习册中本课时的练习。

  2、教材第35页第3、4、5题。

  答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。

  第4题:(1)25、12(2)423、9

  第5题:(1)×(2)√(3)×

《圆锥的体积》教案4

  教学内容:

  教科书第52页练习十二的第69题。

  教学目的:

  通过练习,使学生进一步熟悉圆锥的体积计算。

  教学过程:

  一、复习

  1.圆锥的体积公式是什么?

  2.填空。

  (1)一个圆锥的体积是与它等底等高的圆柱体积的

  (2)圆柱的体积相当于和它等底等高的圆锥体积的()倍。

  (3)把一个圆柱削成一个最大的圆锥,削去部分的体积相当于圆柱的,相当于圆锥的()倍。

  二、课堂练习

  1.做练习十二的第6题。

  教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的'体积:

  让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出几种行之有效的测量方法。例如,要求一个圆锥物体的体积,可以先用软尺量出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板测量出圆锥的高,这样就可以求出圆锥的体积。

  2.做练习十二的第7题。

  读题后,教师可以先后提问:

  这道题已知什么?求什么?

  要求这堆沙的重量,应该先求什么?怎样求?

  指名学生回答后,让学生做在练习本上,做完后集体订正。

  3.做练习十二的第8题。

  读题后,教师可提出以下问题:

  这道题要求的是什么?

  要求这段钢材重多少千克,应该先求什么?怎样求?

  能直接利用题目中的数值进行计算吗?为什么?

  题目中的单位不统一,应该怎样统一?

  分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。

  4.做练习十二的第9题。

  读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?

  要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。

  让学生独立做在练习本上,做完后集体订正。

  三、选做题

  让学有余力的学生做练习十二的第10.11.12题。

  1.练习十二的第10题。

  教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

  引导学生利用C=2r可以得到r=。再利用SR,就可以求得S=()。再利用圆锥的体积公式就可以求出其体积。

  2.练习十二的第11题。

  这是一道有关圆柱、圆锥体积的比例应用题。

  可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。

  设圆柱的高为x厘米。

  =X=

  (注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)

  3.练习十二的第12题。

  这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

《圆锥的体积》教案5

  教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;

  教学准备:幻灯片、电脑制图

  教学过程:

  一. 出示课题,引人复习内容;

  1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;

  板书课题

  2.圆柱体的体积怎么求?

  板书:V圆柱=Sh

  3.圆锥体的体积怎么求?

  板书:V圆锥=1/3 Sh

  4.公式中的 s、h分别表示什么?1/3表示什么?

  小结:求圆柱体和圆锥体的体积,首先要正确应用公式。

  板书:1.正确应用公式

  当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?

  二. 基础练习

  根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)

  计算这些形体的体积:

  (1)S底=1.5 平方米 h=5 米 求V圆柱

  (2)S底=1.5 平方米 h=5 米 求V圆锥

  (3)r=10分米 h=2 米 求V圆柱

  (4)C=6.28米 h=6 米 求V圆锥

  (1)、 (2)两题条件相同,所求不同;

  板书:2. 圆锥体积一定要乘 1/3

  (3)、 (4)两题都要先求出底面积;

  板书:3. 单位名称要统一

  三. 实际应用练习:

  我们还可应用到生活中去解决一些实际问题:(幻灯出示)

  1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?

  默读后问同学:做这道题前有没有准备工作要做?(单位要统一)

  2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?

  默读后问同学:要注意麦堆是什么形状?

  请两位同学板演,其余在本子上自练;

  3.小结:在解这两题时都用到了什么计算?

  四. 提高练习:

  (幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?

  (电脑出示图案)观察水面变化情况,求什么?

  1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?

  2. S可以通过哪个条件求?( r=10厘米)

  3.体积是什么呢?(电脑屏幕逐步演示)

  (1)当钢材放入时水面上升,取出时水面下降,和什么有关?

  (2)放入时水面为什么会上升?

  (3)圆锥体占据了水桶里哪一部分水的体积?

  (4)上升的水的体积等于什么?

  (5)求圆锥形钢材的体积就是求什么?

  (6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)

  (7)板演,同学自练;

  五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)

  1.当圆柱体与圆锥体等底等高时,圆柱的.体积是圆锥体积的3倍;(逆向)

  2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;

  3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。

  六、总结:

  这节课我们复习了什么?

《圆锥的体积》教案6

  教学内容:

  冀教版小学数学六年级下册第40~42页。

  教学目标:

  1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

  2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程

  3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

  教学重难点:

  教学重点:了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

  教学难点:理解圆锥的高和圆锥体积公式中“Sh”表示的实际意义。

  教具学具:

  1、等底等高的圆柱和圆锥型容器,一些沙子。

  2、多媒体。

  教学流程:

  一、炫我两分钟

  主持学生指名叫学生回答下列问题:

  1.圆柱有几个面?各有什么特点?

  2.怎样计算圆柱的体积?

  学生回答问题。

  【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的相关知识,在轻松愉快的氛围中自然引入本节所学知识。】

  二、创设情境

  1、教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

  2、出示问题情境:

  最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)

  【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】

  三、探究新知

  尝试小研究一(课前):了解圆锥的特点

  1.观察圆锥形的物体或图片,它们有哪些特点?

  我的发现:

  2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的侧面是一个( ) 。

  3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。

  4.怎样计算圆锥的体积?

  我的猜想:( )

  尝试小研究二(课上):推导圆锥体积的计算公式

  1、引导学生借助圆柱,探讨圆锥的体积公式。

  ①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?

  ②、是怎样推导的呢?你有什么想法?

  下面我们就用实验的方法来推导圆椎的体积公式。

  老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)都有吗?

  2、用实验的方法,推导圆锥的体积公式。

  ①、引导学生观察用来实验的圆锥、圆柱的特点。

  其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?(学生发现等底等高)(师板书等底等高)

  ②、学生实验:

  你想怎么实验?(小组可以议一议)(老师指导:倒一下)

  请大家以小组为单位进行实验,在实验中,注意作好记录,思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)

  A:你们小组是怎样进行实验的?

  B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?

  C:根据这个关系怎样求出圆锥的体积?

  (教师指导:为了让实验更准确些,可以用尺子将沙子刮平再倒入)

  ③、学生交流汇报,完成计算公式的推导:

  小组汇报,师板书。

  圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  V=1/3Sh

  【设计意图:通过小组合作,观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程,知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。】

  四、解决问题,巩固练习

  (一)运用这个公式解决老师提出的问题,帮助老师解决问题。

  1、 学生试做。

  2、对子同学交流。

  3、小组交流。

  4、展示汇报。

  (二)判断: 用手势来回答

  1、圆柱的体积是圆锥体积的3倍。( )

  2、一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )

  3、把一个圆柱木块削成一个最大的'圆锥,削去的体积是圆柱体积的三分之二。( )

  (三)完成教材第42页“试一试”。

  【设计意图:通过练习,加深对本节课知识的了解,使学生更好的掌握本节课所学知识,并提高学生应用所学知识解决实际问题的能力。】

  五、盘点收获

  通过这节课的学习,你有什么收获?你还想了解哪些知识

  【设计意图:引导学生进行小结,培养学生的探究欲望,有利于知识的积累和自主学习能力的提高。】

  六、拓展延伸

  教材第42页“练一练”第4题。

  【设计意图: 把课上的知识延伸到课外,使学生进一步感受数学于生活并应用于生活。】

  板书设计: 圆锥和圆锥的体积

  圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  圆锥的体积=底面积×高×1/3

  V=1/3Sh

  5 O

《圆锥的体积》教案7

  教学目标

  1、推导出圆锥体积的计算公式。

  2、会运用圆锥的体积公式计算圆锥的体积。

  重点难点

  圆锥体积公式的推导过程。

  教学过程

  一、板书课题

  师:同学们,今天我们来学习“圆锥的`体积”(板书课题)。

  二、出示目标

  理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。

  三、自学指导

  认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。想:

  1、圆锥的体积与圆柱的体积有什么关系?

  2、圆锥的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能正确地回答思考题并能做对检测题!

  检测题

  完成课本第34页“做一做”第1、2题。

  小组合作,校正答案

  后教

  口答

  一个体积是1413立方分米的铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?

  小组内互相说。

  当堂训练

  1、必做题:

  课本第35页第5、6、7题。(做在作业本上)

  2、选做题:

  有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)

《圆锥的体积》教案8

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

  (二)核心能力

  在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

  (三)学习目标

  1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

  2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

  (四)学习重点

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  (五)学习难点

  圆锥体积公式的推导

  (六)配套资源

  实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

  二、教学设计

  (一)课前设计

  1.复习任务

  (1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

  (2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

  设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

  (二)课堂设计

  1.情境导入

  (出示沙堆)

  师:你们有办法知道这个沙堆的体积吗?

  学生自由发言,提出各种办法。

  预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

  师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

  设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

  2.问题探究

  (1)观察猜想

  师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

  学生自由发言。

  (圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

  师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

  学生猜想。

  (2)操作验证

  师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

  实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

  实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

  1号圆锥2号圆锥3号圆锥

  次数

  与圆柱是否等底等高

  学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

  (3)交流汇报

  ①汇报实验结果

  各组汇报实验结果。

  ②分析数据

  师:观察全班实验的数据,你能发现什么?

  (大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

  师:什么情况下,圆柱刚好能装下三个圆锥的水?

  各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

  师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

  老师用标准教具装沙土再演示一次,加以验证。

  ③归纳小结

  师:谁能来总结一下,通过实验我们得到的结果是什么?

  (4)公式推导

  师:你能把上面的试验结果用式子表示吗?(学生尝试)

  老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  圆锥的体积=×圆柱的体积

  =×底面积×高

  S=sh

  师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

  考查目标1.2

  (5)实践应用

  师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重,这堆沙子大约重多少吨?(得数保留两位小数。)

  师:要求沙堆的体积需要已知哪些条件?

  (由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  学生试做后交流汇报。

  已知圆锥的底面直径和高,可以直接利用公式

  V=π()h来求圆锥的体积。

  师:在计算过程中我们要注意什么?为什么?

  注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。

  3.巩固练习

  (1)填空。

  ①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。

  ②圆锥的体积是,与它等底等高的圆柱的体积是()m。

  ③圆锥的'底面积是,高是9m,体积是()m。

  (2)判断,并说明理由。

  ①圆锥的体积等于圆柱体积的。()

  ②圆锥的体积等于和它等底等高的圆柱体积的3倍。()

  (3)课本第34页的做一做。

  ①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?

  ②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重。这个铅锤重多少克?(得数保留整数)

  4.课堂总结

  师:这节课你收获了什么?和大家分享一下吧!

  圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。

  (三)课时作业

  1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

  答案:30÷2=15(厘米)

  ××152×30

  =×30

  =7065(立方厘米)

  答:雕成的圆锥的体积是7065立方厘米。

  解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1.2

  2.看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

  解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

  ①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

  ②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

  ③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

  以上三种情况计算并加以比较,得出结论。考查目标1.2

《圆锥的体积》教案9

  教学目标

  1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

  2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

  教学重点和难点

  圆锥体体积公式的推导。

  教学过程设计

  (一)复习准备

  1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。

  这是什么体?(圆锥体)

  (板书:圆锥)

  上节课我们已经认识了圆锥体,这里有几个画好的几何形体。

  (出示幻灯)

  一起说,几号图形是圆锥体?(2号)

  (指着圆锥体的底面)这部分是圆锥体的什么?(底面)

  (指着顶点)这呢?

  哪是圆锥体的高?(指名回答。)

  (用幻灯出示几个图形。)

  在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。

  (学生举卡片反馈)

  你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)

  那么这个圆锥体的高在哪呢?(在幻灯上打出圆锥体的高。)

  看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。

  (板书,在“圆锥”二字的后面写“的体积”。)

  (复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。)

  (二)学习新课

  (老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?

  (再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。)

  看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。

  为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?

  (学生得出:底面积相等,高也相等。)

  底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底 等高)

  既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)

  为什么?(因为圆锥体的体积小)

  (把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

  的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。

  (学生分组做实验。)

  谁来汇报一下,你们组是怎样做实验的?

  你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?

  (学生发言。)

  同学们得出这个结论非常重要,其他组也是这样的吗?

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  (不是)

  是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

  为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?

  (因为是等底等高的圆柱体和圆锥体。)

  呢?(在等底等高的情况下。)

  (老师在体积公式与“等底等高”四个字上连线。)

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  今后我们求圆锥体体积就用这种方法来计算。

  (老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。)

  (三)巩固反馈

  1.口答。

  填空:

  2.板书例题。

  例 一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?

  (指名回答,老师板书。)

  =20(cm3)

  答:它的体积是20cm3。

  3.练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。

  (幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。

  (学生在小黑板上只写结果,举黑板反馈。)

  你们求出这个圆锥体的.体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看来判断问题必须要有科学依据。

  5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。

  (1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是( )(dm3)。

  ②3a(dm3)

  ③a3(dm3)

  (举卡片反馈,订正。)

  (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是( )cm3。

  (学生举卡片反馈,订正。)

  6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能)

  为什么?(因为不知道底面积和高。)

  需要测量什么?(底面半径和高。)

  怎么测量?(小组讨论。)

  (指名发言)

  今天回家后,把你们测量的数据写在本子上,再计算出体积。

  这节课我们学了什么知识?

  出思考题:

  现在我们比一比谁的空间想象能力强。

  看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

  指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。

  (四)指导看书,布置作业

  (略)

  课堂教学设计说明

  本节课的主要特点有以下几点:

  一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学习的欲望。在公式推导过程当中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思维过程。

  三是教学层次清楚,步步深入,重点突出。

  四是练习有坡度,形式多,教学反馈及时、准确、全面、有效。

  板书设计

《圆锥的体积》教案10

  一、 教学内容

  九年义务教育六年制小学教科书《数学》(第一版)六年级第十二册第二单元。

  二、 教材分析

  1、内容分析:这是本单元实验探究性较强的知识点,通过学生合作探究,理解并掌握圆锥体积的计算方法,且能加以运用。

  2、教学重点:正确运用公式计算圆锥的体积,学会解决与计算圆锥形物体有关的实际问题。

  3、教学难点:理解圆锥体积公式的推导。

  三、 教学目标

  1、知识教学点:让学生通过观察、亲自动手做对比实验、分析、验证等活动,初步感知圆锥的体积计算公式的由来,能理解并加以运用。

  2、能力训练点:培养学生的观察、比较、分析、综合、概括以及初步的自主探究的能力。

  3、思想渗透点:激发学生积极探索新知和学习数学的欲望。

  四、 教、学具准备

  1、教具:量筒(2只)、圆柱和圆锥(等底等高,可装水)、红颜色的水、不规则的石块。

  2、学具:教师指导用硬塑料纸做3组可盛水的圆柱和圆锥(①等底等高 ②等底不等高 ③等高不等底)、适量的水。

  五、 教学过程

  (一) 创设探究情景,激趣引思

  1、教师行为

  (1) 谈话:同学们探究了计算圆柱体积的方法。想不想探究圆锥体积的计算方法呢?今天我们用准备好的学具试一试!

  (2) 演示实验:先出示实验器材,让学生细心观察比较;在空圆柱里装满红颜色的水,然后倒入一只量筒里;在空圆锥里装满红颜色的水,倒入另一只量筒里,像这样倒三次。

  (3) 质疑: 通过老师做实验,同学们看到了什么?想到了什么?发现了什么?有什么感想?

  2、学生活动

  (1) 听谈话,明确主题。

  (2) 细致入微地观察演示实验。

  (3) 四人小组合作讨论交流,看到的、想到的。并分组汇报讨论结果。(两只一样的量筒里水面高度一样,用空圆锥倒了三次水,空圆柱倒了一次,它们的底面大小及高度一样,两只量筒里水的体积相等、空圆锥装三次的水与空圆柱装一次的水一样多等)。

  (4) 亲自用教师演示用具验证讨论结果。

  (设计意图:通过演示实验激发学生的探究兴趣,激活学生思维。)

  (二) 提出探究假想,实践验证

  1、教师行为

  (!)启迪:老师做的实验对我们今天的探究活动有什么启发?请同学们提出自己的设想,并给予各组学生必要的指导,进行小组讨论。

  (2)综述讨论结果,提问:所有圆柱的体积都等于圆锥体积的3倍,圆锥体积都等于圆柱体积的1/3,是否正确,为什么?有什么条件限制?再让学生观察老师用的实验器具思考。

  (3)促思:同学们设想的条件哪一种正确?大家没有量筒,用你们准备的

  学具怎样才能验证假设?

  (4)合作探究:创新验证方案,怎样让它具有可操作性,教师适当点拨。

  (5)组织学生用确定的方案进行合作探究,实践验证。

  (6)诱导:修正假设,反思结果,得出结论,层层深入。

  2、学生活动

  (1)小组讨论,积极交流,达成共识。

  (2)分组汇报讨论结果:对今天的学习有帮助,假设空圆柱和空圆锥里装水的体积近似等于它们的体积;则老师所用的空圆柱的体积将等于空圆锥体积的3倍,空圆锥的.体积就等于空圆柱体积的1/3。

  (3)根据问题设想条件:圆柱和圆锥、等底等高、等底不等高、等高不等底。

  (4)交流确定验证方案:分别用三组准备好的空圆锥装满水倒入空圆柱里,看哪一组装3次刚好装满。

  (5)分组实验。

  (6)汇报探究情况:等底等高的一组空圆柱和空圆锥才符合原先假设。

  (7)小结:圆柱的体积等于和它等底等高的圆锥体积的3倍;圆锥体积等于和它等底等高的圆柱体积的1/3.即

  V柱=1/3 V锥=1/3 sh=1/3 ∏r2h

  (设计意图:培养学生的分析能力和自主探究学习的能力。)

  (三)巩固探究成果,深化理解

  1、教师行为

  (1) 巩固新知:让学生计算课本例1、例2、做一做,然后集体订正。

  (2) 强调:计算圆锥体积时,最容易出现的错误是什么?

  (3) 引申练习:一个圆锥形零件,已知下列条件,分别求其体积

  ①底面半径3厘米,高15厘米;

  ②底面直径5厘米,高10厘米;

  ③底面周长12.56厘米,高10厘米;

  ④底面半径3厘米,比高少70%。

  2、学生活动

  (1)自主训练,多思多问。

  (2)总结:计算时,不能忘记特殊数字“1/3”

  (3)灵活运用公式,找出自己知识的不足。

  (设计意图:运用探究成果进行强化练习,加深对知识的理解,培养学生综合运用能力。)

  (四) 拓展探究思维,迈向生活

  1、教师行为

  质疑:

  (1)出示一个不规则滑石块,怎样求其体积?(教师作指导)

  (2)学校食堂买来一车煤炭,倒堆成圆锥体,量得其底面周长和高分别为12.56米,每立方米煤200元,结果付了1300元,问学校有没有多花钱?

  2、学生活动

  (1)分组讨论,引导得出求其体积的方法:把不规则的物体(不吸水)放进盛水的容器里,求出上升那部分水的体积也就等于不规则物体的体积。

  (2)合作探讨明确计算方法。

  (设计意图:解决生活中的实际问题,体现“人人学有价值的数学,不同的人在数学上得到不同的发展”的新课程理念,培养学生的创新意识和实践能力。)

  教学反思:

  立足教材,根据本地区挖掘学生较熟悉的、乐于接受的、具有多方面教育价值,能引起学生思考的素材,真正实现用教材,并加以创新,让探究成功率提高,激起了学生的学习兴趣。在课堂教学中充分发挥学生的主体性,构建了“激趣引思——实践验证——深化理解——迈向生活”的教学模式,促进了学生学习方式的转变。]

  教学评析:

  教师充分利用教学用具,开发数学课程资源,让学生在探究新知的过程中,进一步发展空间观念和应用数学的能力,实现了让学生在生活中学数学、用数学的愿望。

  在教学过程中与学生积极互动,共同发展,处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性,引导学生观察、质疑、探究,在实践中学习,促进学生在教师指导下主动地、富有个性的学习,以学生为本,以问题为中心,以实验探索为主要手段,以讨论为交流方式,以陈述观点及根据为要求,把学生推到了探究性学习的前台,让学生去想、去说、去做、去表达,去自我评价、去体会科学知识的真谛,促进学生全面发展。

《圆锥的体积》教案11

  教学内容:

  第25~26页,例2、例3及练习四的第3~8题。

  教学目的:

  1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、已有的生活和学习经验,在小组活动过程中,培养学生的`动手操作能力和自主探索能力。

  3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:

  掌握圆锥体积的计算公式。

  教学难点:

  正确探索出圆锥体积和圆柱体积之间的关系

  教具准备:

  每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:圆柱的体积=底面积高。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

  (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?组织学生实验分组合作学习

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

  学生叙述实验过程并总结结论,得出计算公式

  板书:圆锥的体积= 1/3圆柱的体积=1/3 底面积高,

  字母公式:V= 1/3Sh

  2、教学练习四第3题

  这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

《圆锥的体积》教案12

  教学内容:

  练习四第4~12题和第23页思考题

  教学目标:

  1.使学生进步理解、掌握圆锥的体积计算方法,能根据不同的条件计算出圆锥的体积。

  2.提高学生解决生活中实际问题的能力。

  3.养成良好的学习习惯。

  教学重点:

  进步掌握圆锥体积的计算方法。

  教学难点:

  圆柱和圆锥体积之间的联系与区别。

  教学过程:

  一、复习旧知

  1.复习体积计算。

  (1)提问:圆锥的体积怎样计算?

  (2)口答下列各圆锥的体积。

  ①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  2.引入新课。

  今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

  二、教学新课

  组织练习。

  1.做练习四第4题。

  学生独立计算。

  2.做练习四第5题。

  把等底等高的圆柱体积和圆锥体积相互转化,从已知的圆柱体积得出相应的圆锥体积,从已知的圆锥体积得出相应的圆柱体积,继续加强对等底等高圆柱和圆锥体积关系的理解。

  3.做练习四第6题。

  出示第6题的图。

  引导分析:根据图示的各个立体图形的底面直径与高,寻找与圆锥体积相等的圆柱,可以从圆锥体积是等底等高圆柱体积的1/3,推理出体积相等的圆柱与圆锥,如果底面积相等,圆锥的高是圆柱的3倍圆柱的.高是圆锥的1/3;如果高相等,圆锥的底面积是圆柱的3倍圆柱的底面积是圆锥的1/3。还要注意到,大圆的直径是小圆的3倍小圆直径是大圆的1/3,大圆的面积则是小圆的9倍小圆的面积是大圆的1/9。

  4.做练习四第7题。

  (1)提问:圆锥体积最大时与圆柱的关系是什么?(等底等高)

  接着让学生独立练习。

  (2)让学生自主地提出其他问题,进一步的掌握圆锥和圆柱的关系。

  5.做练习四第8题。

  联系实际,解决问题。

  6.做练习四第9题。

  让学生动手操作,理解三角形绕它的两条高旋转一周形成两个大小不同的圆锥。在此基础上让学生独立计算。

  7.做练习四第12题。

  出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第115页图制作的圆锥,求出它的体积来。

  三、课堂小结

  这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算方法,有时候还可以计算出圆锥形物休的重量。

  四、布置作业

  1.练习四第10.11题。

  2.学有余力学生完成思考题。

《圆锥的体积》教案13

  教学目标:

  1、让学生掌握圆锥体积的计算方法,并能运用公式计算圆锥的体积,解决简单的实际问题。

  2、通过动手操作实验,使学生经历圆锥体积公式的推导过程。

  3、在观察与分析、操作与实验的学习活动中培养学生主动探究问题和空间想象能力。

  教学重点、难点:

  掌握圆锥体积公式。

  教具使用:

  课件,等底等高长方形、三角形彩纸,等底等高圆锥、圆柱教具,水。

  教学过程:

  一、创设情境,问题导入

  1、师出示长方形、三角形纸各一张。

  提问:等底等高的长方形与三角形面积有什么关系?

  2、提问:旋转长方形,三角形各得到什么图形?

  长方形沿着长旋转一周得到圆柱、直角三角形沿一条直角边旋转一周形成圆锥。

  3、观察。旋转后得到的圆柱和圆锥你有什么发现?(等底等高)

  4、猜想。旋转后得到的圆锥的体积与圆柱的体积又有怎样的关系?

  二、探究新知

  1、实验

  师出示:等底等高的圆柱、圆锥学具、水。

  师:现在我们就要做一个实验,看看圆柱和圆锥的体积有什么关系?

  生动手实验:

  预设方案:①先灌满圆锥,3次倒入圆柱

  ②先灌满圆柱,3次倒入圆锥

  2、生演示汇报

  师板书:圆锥的体积等于圆柱体积的

  质疑:

  追问:是否同意上面的结论。引导学生说出:和它等底等高补充板书。

  3、小结操作过程,课件演示。

  4、推导公式。让生说圆锥的体积用字母如何来表示?

  v锥= sh= πr2h

  三、实际应用

  (1)、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  生独立完成,师巡视,生板书。

  强调:19×12是与圆锥等底等高圆柱的体积,再乘

  ×19×12=73(立方厘米)

  (2)、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是米。每立方米小麦约重750千克,这堆小麦约有多少千克?

  生独立完成,师巡视,生板书

  ×(4÷2)2××=(立方米)

  ×750=4710(千克)

  3、填空

  ⑴一个圆锥的.底面积是12平方厘米,高是6厘米,它的体积是()立方厘米。

  ⑵一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

  ⑶一个圆锥比与它等底等高的圆柱体积少12立方厘米,圆柱体积是()立方厘米。

  4、判断:

  ⑴圆柱一定比圆锥体的体积大。()

  ⑵圆锥的体积等于和它等底等高的圆柱体积的。()

  ⑶正方体、长方体、圆锥体的体积都等于底面积×高。()

  ⑷等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()

  四、拓展提高

  有一根底面直径是6厘米,长是15厘米的圆柱体钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?

  法一:(v柱-v锥)(6÷2)2××15-(6÷2)2××15=(立方厘米)

  法二:(v柱)×(6÷2)2××15=(立方厘米)

  五、课堂小结:这节课你有哪些收获?

  板书设计

  圆锥的体积

  圆锥的体积等于和它等底等高的圆柱体积的

  v锥= sh= πr2h

  ×19×12=73(立方厘米)

  ×(4÷2)2××=(立方米)

  ×750=4710(千克)

《圆锥的体积》教案14

  教学目标:

  1、渗透转化思想,培养学生的自主探索意识。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学准备:主题图、圆柱形物体

  教学过程:

  一、复习:

  1、长方体的体积公式是什么?

  (长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课:

  1、圆柱体积计算公式的.推导:

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

  (课件演示将圆柱细分,拼成一个长方体)

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  (长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题:

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?

  (计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

  4、教学例6:

  (1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例6。

  ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  5、比较一下补充例题、例6有哪些相同的地方和不同的地方?

  (相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。)

  三、巩固练习:

  1、做第26页的第1题:

  2、练习五的第2题:

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、全课总结:

《圆锥的体积》教案15

  【教学内容】九年义务教育六年制小学数学第十二册第42-43页。

  【教学目的】

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  【教学重点】圆锥的体积计算。

  【教学难点】圆锥的体积公式推导。

  【教学关键】圆锥的体积是与它等底等高的圆柱体积的三分之一。

  【教具准备】简易多媒体、等底等高的圆柱和圆锥空心实物各一个。

  【学具准备】三种空心圆锥和圆柱实物各一个

  【教学过程】

  一、复习

  1、圆柱的体积公式是什么?用字母怎样表示?

  2、求下列各圆柱的体积。(口答)

  (1)底面积是5平方厘米,高是6厘米。

  (2)底面半径4分米,高是10分米。

  (3)底面直径2米,高是3米。

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。(板书:圆锥的体积)

  二、新课教学

  师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

  生:圆锥的'底面是圆形的。

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师:你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  2、圆锥的体积怎么算?体积公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是V=1/3sh。

  师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

  师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

  师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

  例l:一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

【《圆锥的体积》教案】相关文章:

圆锥的体积说课稿11-10

圆锥的体积教学反思04-06

《圆锥的体积》教学设计04-23

《圆锥的体积》教学反思04-14

圆锥的体积教学设计06-13

圆锥的体积教学设计15篇02-02

《圆锥的体积》教学反思15篇04-16

圆锥的体积教学反思15篇04-16

《圆锥的体积》教学反思(15篇)06-28

《圆柱的体积》教案04-01