当前位置:范文派>教学范文>教学设计>工程问题教学设计

工程问题教学设计

时间:2021-02-09 13:22:32 教学设计 我要投稿

工程问题教学设计

  作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。一份好的教学设计是什么样子的呢?下面是小编收集整理的工程问题教学设计,仅供参考,欢迎大家阅读。

工程问题教学设计

工程问题教学设计1

  教学内容:第十一册79页例9(第一教时)

  教学目的:

  1.使学生认识工程问题的结构特点,掌握它的数量关系、解题思路和解题方法,并能正确地解答工程问题的基本题。

  2.培养学生解题的迁移能力,以及数学思维能力。

  教学准备:投影片若干张

  教学过程:

  一、导入:

  今天,老师让每位同学当公司经理,看哪位经理最精明。

  出示:假如你是某工程队的经理,要修一段路,现有甲、乙两个工程队,甲队单独修10天完成,乙队单独修15天完成。你想承包给哪个队?为什么?(学生分组讨论,派代表发言)

  生1:给甲队做,因为他完工时间比乙队少,……

  师:仅考虑时间少行吗?

  生2:给乙队做,虽然他时间较长,可能修路质量好,……

  师:有没有更好的方案呢?

  生3:由甲乙两队合做,完工时间更短,可让两队优势互补,……

  师:若甲乙两队合做,猜猜看,大约需要几天完工?

  生1:小于10天,但大于5天。

  生2:6天,可假设一段路长120千米,……

  师:我们不妨计算一下,具体是几天?

  [从实际事例入手,学生成为“经理”,突出了学习的主动性。选择的素材紧密联系本课时的内容,学生在探讨解决问题的同时,兴趣盎然地进入学习新知的准备状态。]

  二、教学例9

  1. 出示例9:一段公路长30千米(60千米)[用黑卡纸盖住],甲队单独修10天完成,乙队单独修15天完成,两队合修几天修完?

  师:各位“经理”算一算,几天完成呢?[同学们议论纷纷,跃跃欲势,都想当个精明的“经理”。]

  学生汇报计算的方法:30÷(30÷10+30÷15)=6(天)(板书)

  师:请你说说每步计算的含义。教师依次对应板书“甲的工效”“乙的工效”“工作总量”“合做时间”并小结数量关系式:工作总量÷工作效率和=合做时间

  师:如果把30千米改成60千米,其他条件不变,合做时间是多少呢?(揭去黑卡纸)[同学们思考片刻,纷纷举手]

  生:60÷(60÷10+60÷15)=6(天)(板书)

  师:仔细比较这两道题,你发现了什么?

  生1:合做时间都是6天。

  生2:无论公路长多少,只要各自单独做的时间不变,合做时间不变。

  师:是这样吗?同学们用不同的公路长度试一试。[学生为了得到证实,即刻得出了结论。学生有了展现自我的机会,同时启发了学生探索数学奥秘的方法。]师板书省略号

  师:为什么会这样呢?

  生1:工作总量扩大了,工作效率也在扩大,而且扩大的倍数相同,所以时间不变……

  生2:无论公路长多少,甲乙两队每天修的各自占总长的几分之几没变,……

  师:(擦去30千米和60千米)如果没有具体的公路长度,这题还能解答吗?[学生陷入了沉思]可以把这段路看作什么?[学生立即恍然大悟]

  生:把这段公路看成单位“1”。

  师:甲乙的工作效率又如何表示呢?

  生:1/10,1/15

  师:同学们算一算,合做时间是几天呢?

  学生列出算式:1÷(1/10+1/15)=6(天)(板书)

  2. 师:这就是我们今天学习的新知识“工程问题”(板书课题)

  师:你觉得工程问题有哪些特点呢?

  生1:把工作总量看成单位“1”……

  生2:工作效率用时间的倒数表示。

  三、练习

  1. 投影出示:教材第80页练习二十第1题。指名学生回答。

  2. 导入部分加一个条件,假如现有三个工程队,丙单独修需12天完成,想一想经理安排合做的方式有几种?每种合做方式各需几天?(只列式,不计算)

  (有4种,分别是甲乙合做,甲丙合做,乙丙合做,三队合做)哪种合做方式时间最少呢?请你把他们从时间少到时间多排列一下。(不计算)

  [本题既巩固了新知,又渗透了简单的排列组合问题,同时让学生领悟工效与所用时间的关系。]

  3. 如果仅修这段路的一半,那么这几种合做方式各需几天呢?

  四、应用

  工程问题的解题方法,在生活中有着广泛的应用。

  1.投影出示:有一批布,如果只做西服的上衣可做20件,只做西服的裤子可做30条,请你算一算,这批布可以做几套这样的西服?

  [本题的意图是学生能运用类比的数学方法解。即看成例9]

  2.你还能想到类似的问题吗?

  [课后教感:整个教学环节努力渗透了数学课程标准的思想,立足数学要生活化,倡导学生为主体等,创设了解决实际问题的情境,让学生充分展现自我。学习数学的实际应用要比学纯数学知识有价值。]

工程问题教学设计2

  教学目标

  1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.

  2.能正确熟练地解答这类应用题.

  3.培养学生运用所学到知识解决生活中的实际问题.

  教学重点

  理解工程问题的数量关系和题目特点,掌握分析、解答方法.

  教学难点

  理解工程问题的数量关系.

  教学过程

  一、复习旧知.

  (一)解答下面应用题

  1.挖一条水渠100米,用5天挖完,平均每天挖多少米?

  列式:1005=20(米)

  2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?

  列式:

  教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?

  学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.

  3.挖一条水渠100米,平均每天挖20米,几天可以挖完?

  列式:10020=5(天)

  4.挖一条水渠,每天挖全长的,几天可以挖完?

  列式:(天)

  师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.

  二、探索新知.

  (一)教学例9.

  例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  1.教师提问:

  (1)用我们学过的方法怎样分析?怎样解答?

  30(3010+3015)=6(天)

  (2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?

  60(6010+6015)=6(天)

  90(9010+9015)=6(天)

  24(2410+2415)=6(天)

  (3)通过计算,你发现了什么?(结果都相同)

  (4)为什么结果都相同呢?

  工作总量的具体数量变了,但数量关系没有变;工作效率是用工作总量工作时间得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)

  (5)去掉具体的数量,你还能解答吗?

  把这段公路的长看作单位1,甲队每天修这段公路的,乙队每天修这段公路的.两队合修,每天可以修这段公路的()

  列式:

  2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)

  3.归纳总结.

  4.小组讨论:工程问题有什么特点?

  工作总量用单位1表示,工作效率用来表示数量关系:工作总量工作效率(和)=工作时间

  5.练习.

  (1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?

  (2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?

  三、巩固练习.

  (一)选择正确的算式.

  一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的,需要多少小时?正确列式是().

  四、归纳总结.

  今天我们这节课学习了新的分数应用题-工程应用题.其解答特点是什么?(工作总量工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位1,工作效率用表示.)工程应用题还有很多变化,以后我们继续学习.

  五、板书设计

  工程问题

  例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  30(3010+3015)=6(天)

  一段公路,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  (天)

  特点:工作总量:1

  工作效率:

  工作总量工作效率=工作时间

  工作总量工作效率和=合作时间

  教案点评:

  该教学设计的特点是新旧知识联系紧密,重点突出。复习中,通过应用题条件的变化,准确的抓住新知识的生长点。新课中,通过新旧知识的对比,突出了工程问题独特的分析思路和解题方法。

  探究活动

  迎接狂欢节

  活动目的

  1.掌握分数应用题的分析和解答方法.

  2.进一步加深对分数应用题的数量关系和联系的'认识.

  活动题目

  鸡爸爸和鸡妈妈为了明天的动物狂欢节,两人计划赶做280面小彩旗发给鸡宝宝们.当天快黑的时候,鸡爸爸已做了自己任务的,鸡妈妈已做了自己任务的,这时,他们数了数,还剩下64面小彩旗没有完成,他们准备等吃过饭后,休息片刻来继续完成.夜深的时候,鸡爸爸和鸡妈妈终于完成了任务.

  小朋友,你知道鸡爸爸、鸡妈妈他们每人做多少面小彩旗吗?

  活动过程

  1.教师出示活动题目.

  2.学生分小组讨论.

  3.小组汇报解答过程,方法多并且简单的小组为优胜组.

工程问题教学设计3

  教学目标:

  1、经历工程问题的抽象化过程,进一步感知它的产生。

  2、复习巩固工程问题的一般解决策略。同时通过联想熟悉的事件解决与此相类似的数学问题,进而进行类比数学思想的渗透。

  3、在基本解决简单工程问题的基础上进行拓展练习。

  教学过程:

  课前谈话。同学们,在数学这门学科里,大家最感到头痛的是什么?(解决问题)同学们还知道在这门学科里最有价值的是什么?(解决问题)它能让我们感受到数学的价值,体验到学习的快乐与成功。

  一、感知工程问题的特征及产生的原因。

  1、出示课件。上面显示以下习题。

  1盘柏公路长8千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?

  2盘达公路长20千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?

  3柏达公路长28千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?

  4一段路,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?

  请同学们先认真观察这几个题有什么特征,再冷静地思考一下,看谁能最快解答出来?(教师巡视,发现那么没有一个一个解答的同学,只解答一个的同学。然后让这位同学汇报原因,直击中心两队每天的工作量(占总共的几分之几没发生变化)从而得出这一段路的长度可以有多种数量表示,我们可以把它们看作“单位1”来进行解答。对这些学生进行大力表扬。

  8÷( + )

  20÷( + )

  28÷( + )

  1÷( + )

  二、复习基本解决策略。

  1、出示例题。一项工程,甲队单独做20天完成,乙队单独做15天完成,如果两队合做多少天可以完成总共的 ?

  1先认真读题,独立思考(理清思路)完成习题。

  2汇报交流。要求说出解题思路。通常有综合法和分析法两种。

  3如果学生回答较好,则不必出示解题思路,如果不是很好则出示。而且要安排一个习题让学生做后进行交流说出自己的解题思路。

  解题思路:我是这样想的。甲队单独做20天完成,就可以想到甲队每天做的(也就是甲队的工作效率)占总共的 ;乙队单独15天完成,就可以想到乙队每天做的(也就是乙的工作效率)占总共的 。甲乙两队合作一天就是甲队每天修的 和乙队每天修的 ,也就是 + 。用两队完成总工程的 ,除以两队每天完成总共的 + ,就可以得到需要多少天。 ÷( + )

  像这种从条件入手解决问题的策略称为综合法。

  我还可以这样想:要想求出甲乙合作多少天完成总共的 ,就必须找出甲乙合作的工作总量( )和甲乙合作一天的工作效率的和( + ),然后根据工作总量÷工作效率和=合作时间 ÷( + )像这种从问题入手解决问题的策略称为分析法。

  4练习题。

  三、拓展延伸。

  1、出示一个类似的问题。一段路,甲单独6小时行完,乙单独8小时行完,如果两人同时从两地相向而行几小时可以相遇?

  1独立完成,交流解题思路。

  2教师总结:像这种通过联想熟悉的事物或例子将问题转化成熟悉的例子数学上把这种解题策略称为类比。

  解题思路:我是这样想的:这个题跟我们熟悉的工程问题有想类似,我可以把它转化为一项工程,甲单独6小时行完,乙单独8小时行完,如果两人合作几小时可以完成?

  2、出示一个习题。一批布,单独做上衣可以做10件,单独做裤子可以做15件,如果要做成套的,可以做多少套?

  1通过观察采取类比策略转化为工程问题然后解答。

  2交流总结。

  3、同学们还能列举出类似的例子吗?先独立思考1-2分钟再抽生交流。

  四、综合练习。

  此环节是根据前面第二环节如果学生基础较好则此为补充。习题:一项工程,甲独做6天完成,乙独做8天完成。两人合做,中途甲因病休息1天这项工程前后共用了多少天?

【工程问题教学设计】相关文章:

1.解决问题教学设计

2.鸽巢问题教学设计

3.关于《价格和行程问题》教学设计

4.《三个问题的答案》教学设计

5.《鸽巢问题》教学设计范文(精选3篇)

6.小学语文《科学家的问题》优秀教学设计

7.设计工程合同

8.四年级数学植树问题教学设计