当前位置:范文派>教学范文>教学设计>圆的认识教学设计

圆的认识教学设计

时间:2024-07-12 03:53:32 教学设计 我要投稿

圆的认识教学设计(15篇)

  作为一位优秀的人民教师,有必要进行细致的教学设计准备工作,教学设计是对学业业绩问题的解决措施进行策划的过程。那么你有了解过教学设计吗?下面是小编整理的圆的认识教学设计,欢迎阅读与收藏。

圆的认识教学设计(15篇)

圆的认识教学设计1

  教材分析

  “圆的认识”是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的,在学生认识了多种平面图形的基础上认识的由曲线围成的平面图形,是小学阶段认识的最后一种常见的平面图形。由于学生已经对圆有了初步的感性认识,所以教材首先从日常生活的常见物体中引出圆,再凭借圆形物体画出圆,然后利用折叠的方法找出圆心,在此基础上,通过测量、比较和交流等活动,引导学生认识圆的半径和直径以及它们的长度之间的关系,从而使学生掌握圆的特征。考虑到小学生的认知水平,教材并没有给出圆的本质特征的描述,但教材通过观察与思考、画一画等活动帮助学生逐步对此加以体会,为学生到中学学习圆的定义提供了感性认识和直观经验。

  学情分析

  我班学生在低年级已经对圆有了初步认识,加之生活中比较常见的缘故,已经有了一定的感性积累,只是在概念上尚不具体化,同时已经学过了几种常见图形认识,如:长方形、正方形、三角形等,为本课的学习奠定了基础。小学五年级的学生思维处于经验性的逻辑思维,思维的形成与发展需要依赖具体形象的经验材料来理解和抽象事物之间的内在联系,以前学的几种常见图形是由线段围成的,而圆则是由曲线围成的图形,无论从内容本身,还是研究问题的方法,都有所变化。故此,在教学中要紧密联系学生的实际生活,列举出日常生活、生产中所见到的圆形物体,引出圆的概念,了解圆的特征。圆的相关知识与特征,学生通过自己的操作、探索都能获得,“学”数学就是“做”数学;而学生的心理特点,决定了应当重视引导学生运用多种感官,参与知识的形成过程,因此我借助多媒体课件为自己的探索所得提供科学验证和知识深化、运用的机会。通过认识圆、画圆过程,体验数学的乐趣。

  教学目标

  1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助工具画圆,能用圆规画指定大小的圆,能应用圆的知识解释一些日常生活的现象。

  2、使学生进一步体验圆形与生活的联系,体会圆形物体的美。

  教学重点和难点

  进一步认识圆的特征及其内在联系,使学生深切体会圆的特征与我们的生活紧密相连,并学会用圆规画圆。

  教学过程

  一、情境引入

  师在黑板上板书“圆”字,问:看到这个字你想到什么?(指名回答)

  生:十五的月亮、轮胎、月饼、圆脸蛋、唱片……

  师:一个“圆”字让大家浮想联翩,在我们的.生活中,圆无处不在,说了这么多的圆,看了这么多的圆,你想不想亲自动手画一个?用你手上的工具动手画一画。问:圆和以前学过的平面图形有什么不同?(长方形、正方形、三角形、平行四边形、梯形都是由线段围成的,而圆是由曲线所围成的。)

  二、探究特征

  师:刚才大家用各种工具画了圆,但是,大家可能也发现了,有的工具并不好用,而且大多数只能画一种大小的圆,有没有一种工具可以很方便地画各种大小的圆呢?是什么?

  生:圆规。

  师:对,这个工具就是圆规,圆规就是专门用来画圆的工具(生拿出自己的圆规观察),圆规有一个小圆柄,画圆时手要握住这个小圆柄,还两只脚,一只脚是针尖,另一只脚是用来画圆的笔,画圆时,针尖必须固定在一点,不可移动,两只脚要叉开,手握住小圆柄旋转一周。

  师:你能试着用圆规画出一个圆吗?(生画圆)

  师:让学生说说自己用圆规画圆的过程(组织交流)

  师在黑板上示范画圆,大家看,我们在用圆规画圆的时候要注意一些什么问题?

  1、注意圆规这个针尖要固定在一个点上,我们画的图形才够圆。(板书:1、定点)

  2、圆规的两只脚之间的长度不能变,否则圆形不能闭合。(板书:2、定长)

  3、要用手握住圆规的这个小圆柄旋转一周。(板书:3、旋转)

  师:同学们,现在大家运用刚才总结的方法,再在练习本上画一个圆,看看是否画得更顺畅了。(生画圆)

  师:现在大家都已经学会画圆了,那么同学们再想想,有没有什么办法让我们画的圆都一样大呢?

  师:对!我们可以让两只脚固定,这样就可以画出固定大小的圆了。现在我们先拿出直尺,让针尖和铅笔头之间的距离是3厘米,把圆规固定好,在纸上画一个圆。

  师:这个针尖是什么?(圆心)用什么字母表示?(O)圆心,顾名思义就是圆的中心,刚才我们画的两个圆一样大,但位置不同,想一想:圆的位置是由什么来决定的?(圆心)圆心可以确定一个圆的位置,针尖固定在哪个位置,圆就在那个位置。(板书:圆心决定圆的位置)

  师:大家看这个刚才画的两脚距离是3厘米的圆,要是有人问这个圆有多大,你们怎么回答呢?(半径3厘米的圆),对这个两脚间的距离就是半径,用什么字母表示?(r)(指导书写r,说说什么是半径,作相应的练习)

  师:请你在纸上画一个圆,比原来的圆要小得多。请你在纸上再画一个圆,比原来的圆要大得多。(生画)

  师:刚才我们画了大小不同的两个圆,谁来说一说:圆的大小是由什么来决定的?(板书:半径决定圆的大小)

  师:同学们,你们再想一想,在同一个圆里,这样的半径可以画几条呢?现在我们来做个小小的竞赛,怎么样?在一分钟内看看哪位同学在同一个圆里画的半径又多又好。(板书:在同一个圆里,有无数条半径)请同学们用尺子来量一量这些半径,它们的长度到底是怎样的。(板书:在同一个圆里,所有的半径都相等。)

  师:除了半径以外在圆中还有能决定圆的大小的线段吗?

  生:直径。

  师画一条直径,讲解:通过圆心并且两端都在圆上的线段,叫做直径,用什么字母表示(d)(做相应的练习)

  师:如果我给你们一分钟的时间画直径,想一想:能够画出圆的所有直径吗?(板书:有无数条直径),同样在同一个圆里,所有的直径也相等吗?(板书:所有的直径也相等)

  师:请同学们量一量半径和直径,有什么发现?(r=d=2r)

  师:我们来做个小游戏,比一比谁的反应比较快。(师报半径,生说直径;师报直径,生说半径。)

  师:大家还记得什么是轴对称图形吗?(生拿圆片折,发现交流)

  三、巩固练习

  师:同学们学得可真不错,大家有没有兴趣接受新的挑战呢?

  1、判断题。

  (1)在一个圆中,有一个圆心,无数条半径,无数条直径。( )

  (2)两端都在圆上的线段叫做直径。( )

  (3)半径总是直径的一半。( )

  (4)圆心决定圆的位置,半径决定圆的大小。( )

  (5)圆内直径是最长的线段。( )

  (6)所有的半径都相等,所有的直径都相等。( )

  2、欣赏图片。

圆的认识教学设计2

  教学内容:九年义务教育人教版六年制小学数学第十一册第106---109页,圆的认识和圆的画法,完成练习二十五。

  教学目标:

  1.进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。

  2.在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力。

  3.体验圆的美,享受成功的喜悦。

  教学具准备:圆规、剪刀、水彩笔、白纸、直尺、一副三角尺、绳子、羊的头饰、一元硬币。

  教学过程

  一、揭题

  1.直线图形

  师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?

  生:线段有两个端点,是直的,可以度量。

  师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)

  2.曲线图形

  师:(出示圆的平面图)这是我们学过的……

  生:齐说“圆”(板书:圆)

  师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)

  3.引入圆的特征讨论

  师:想一想:你周围的物体上哪里有圆?

  生:(举例略)

  师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?

  生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。

  生③:一张白纸经折叠后可以剪出一个近似的圆。

  生④:(举起自己的圆规)这是圆规,用它可以画圆。

  师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)

  二、新课

  1.圆的画法

  (1)自由画

  师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)

  生:独立画

  师:谁能说说你是怎样画出来的?

  生:……(用自己的话描述)

  师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)

  反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。

  反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。

  师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?

  (点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)

  2.认识圆心

  师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。

  生:独立完成。

  3.认识半径

  师:举起你们刚才画的圆,互相看一下,都一样大吗?

  生:不一样大。

  师:为什么大的大,小的小,与什么有关?

  生:与圆规两脚分开的大小有关。

  师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。

  生:独立画。

  师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)

  问:线段OA和OB相等吗?

  生:相等。

  师:你是凭观察得出的,那怎样验证呢?

  生:测量。

  师:指名上黑板测量OA与OB的长并报告测量结果。

  生:确实一样长。

  师:在这个圆的曲线上,像A、B这样的点可以找出多少个?

  生:无数个。

  师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?

  生:无数条且长度都相等(板书)

  师:我们刚才研究的'画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。

  师;半径这条线段的一个端点在哪里,另一个呢?

  生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心圆的曲线上)

  师:那什么叫半径呢?

  生:用自己的话说(师完成半径定义的板书)

  师:同一个圆里,半径有什么特点?

  生:无数条且长度都相等。

  4.认识直径

  师:把自己画的圆剪下来

  生:独立剪

  师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。

  生:在教师示范下同步进行。

  师:像这样再重复折几次

  生:独立对折、打开、摸折痕。

  师:你折了好多次,可以发现什么?

  反馈①:每折一次出现一条折痕。

  追问:你折了几次,出现了几条折痕,与他不一样的呢?像这样的折痕在你的圆里能再折出来吗?

  反馈②:对折后圆的两边能完全重合,圆被平均折成两份。

  反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。

  反馈④:这些折痕相交于圆心。

  追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?

  反馈⑤:这些折痕都一样长。

  追问:怎样验证?

  生:测量

  师:量出你圆里每条折痕的长度

  生:汇报结果。(指导学生说:“在我的圆里,……”)

  师:刚才说了这样的折痕有无数条,所以可以怎样下结论?

  生:同一个圆里,所有的折痕长度都相等。

  师:谁能给“折痕”起个名字?

  生:直径(板书:直径)

  师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。

  生:完成

  师:同一个圆里,直径有多少条,长度有什么特点?

  生:略

  师:直径这条线段,它通过了…?它的两个端点分别在哪里?

  生:通过圆心,两个端点都在圆的曲线上。(完成直径定义的相应板书)

  反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。

  师追问:你是怎样得出这个结论的,说说道理。

  生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。

  生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。

  师:换过来说,半径的长度就是直径的……。生:略师:写出字母公式:d=2rr=d2,注意强调“同一个圆里”。

  (以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)

  三、巩固

  1.第108页“做一做”。用彩色笔标出下面各圆的半径和直径。

  2.第109页练习二十五第3题。已知半径长求直径;已知直径长求半径。

  (此项练习放在直径与半径长度关系揭示后进行)

  3.学习按要求画圆。完成第108页“做一做”(画半径是3厘米的圆)。

  教师示范,引导学生逐步完成。

  (1)在作业本适当的地方点一个点做圆心,要考虑上、下、左、右的间距。

  (2)以圆心为起点,向右水平方向画一条3厘米长的线段。

  (3)圆规一脚固定在圆心,另一只脚在3厘米长线段的终点处,然后绕圆心旋转。

  (4)标出字母o、r、d。

  4.第109页练习二十五第2题。为什么车轮都要做成圆的,车轴装在哪里?

  与圆的特征有关。因为圆曲线上的每一点到圆心的距离相等,车轴装在圆心,车轴到地面的距离永远是半径,这样车轮行驶平稳。(配图:如果车轮在水平的路面上行驶,车轮运行时车轴移动形成的直线(轨迹)与地面平行)

  5.阅读第109页第5题,独立填书。

  想:怎样测量1元硬币的直径?

  让学生在实物投影上边演示边说。

圆的认识教学设计3

  教学内容:《圆的认识》人教版 六年级上册

  教学目标:

  1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。

  2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。

  3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。

  教学重难点:掌握圆的特征及画圆的方法。

  教学过程:

  一、创设情境,导入新课

  (1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?

  (2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?

  (3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。

  【设计意图】

  数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。

  二、自主探索,交流互动

  1、感悟画圆法

  师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?

  ……

  2、尝试用圆规画圆

  师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?

  (生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)

  师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?

  ……

  师:其实大家所说到的就是用圆规画圆的步骤和应注意的地方。谁说说?师根据生说相机归纳与板书,并示范画圆。

  (1)确定圆规两脚间的距离

  (2)把针尖固定在一个点上

  (3)把另一只脚旋转一周

  3、画定长为2厘米的圆

  师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)

  【设计意图】

  把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。

  4、剪一剪、折一折

  (1)认识圆心。师:把这些折痕都相交于圆中心的一点,我们把它叫做什么?用字母怎样表示?

  小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。

  (2)认识直径。师:我们任取一条折痕,观察它有什么特点?

  小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的直径)用字母d表示,并在圆上标出。

  (4)认识半径。师:画面中的线段有什么特点?

  小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。

  (5)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?

  a在剪成的圆里你能画多少条半径?它们的关系有什么关系?

  b在剪成的圆里你能画多少条直径?

  c直径与半径有什么关系?

  小组讨论交流

  小结、板书

  【设计意图】

  在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。

  三、自练反馈,巩固练习

  (1)填一填:

  ①同一圆里有( )条直径,有( )条半径。

  ②在同一圆里,直径与半径的比是( )。

  ③把一个圆规的两脚张开2厘米,画一个圆,它的直径是( )。

  (2)判一判,对的打“√”错的打“×”。

  ①两端都在圆上的`线段叫圆的直径。 ( )

  ②圆心到圆上任意一点的距离都相等。 ( )

  ③直径是半径的2倍。 ( )

  (3)三题中选一题做:

  ①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的示意图。

  ②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。

  ③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?

  【设计意图】

  《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。

  四、回顾总结

  师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。

圆的认识教学设计4

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的'距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,

  正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

圆的认识教学设计5

  学习内容:

  新人教版课本第55——58页内容。

  学习目标:

  认识圆的各部分名称,理解同一个圆内直径和半径的关系,能根据这种关系求圆的直径和半径。掌握画圆的方法,学会用圆规画圆。

  学习重点:

  圆的特征及圆的画法。

  学习难点:

  圆的特征及圆的画法。

  学习过程:

  一预习展示

  1 、回忆:我们以前学过的平面图形有()、()、()、()、()等,它们都是由()围成的。

  2 、想一想:

  圆这种平面图形,它是由()围成的。

  3 、举例说明:生活中哪些地方或哪些物体上有圆形?请写下来。

  【阅读质疑自主体验】

  学生预设活动(一):认识圆各部分名称及圆的特征

  1 、按课本56页例2操作圆形纸片,自学本页最后一段,完成下列题目:圆中心的这一点,叫做(),用字母()表示;连接()和()的线段叫做半径,用字母()表示;通过()并且()的线段叫做直径,用字母()表示。

  2 、在圆形纸片上描出圆心、半径、直径并用字母表示出来。

  3 、量一量,比一比,做一做:(利用圆形纸片学习)

  ①在同一个圆内,有多少条半径,这些半径有什么特点?直径呢?

  ②在同一个圆内,直径和半径的长度有什么关系?

  4 、我会填:

  ① r=3cm ②d=9dm ③r=2.4m ④d=3.6cm d=_____ r=_____ d=_____ r=_____ 5 、我是小裁判。

  ①所有的直径都相等,所有的半径都相等。()

  ②圆的直径是半径的2倍。()

  ③圆的半径增加3cm,它的直径也增加3cm。 ( )

  ④半径2cm的圆比直径3cm的圆小。()

  学生预设活动(二):用圆规画圆

  1 、画一个半径2cm的圆,并说说你是怎样画的?

  2 、想一想:

  圆的`位置是由()决定的,圆的大小是由()决定的。 3 、画两个相同的圆,要具备什么条件?

  二合作探究小组展评

  小组讨论自学中存在的问题,组内互帮活动。(不能解决的用笔划出来。)1 、班内交流展示。

  2、评价。

  三小组总结,教师点评

  圆的大小由圆的半径决定,圆心决定圆的位置。周长是围城圆一周的长度。画圆的时候圆规两脚间距离是圆的半径。

  四课堂展示,巩固练习

  1、基本题:

  (1)完成60页1—3题。

  (2)判断,并说为什么。

  a半径的长短决定圆的大小。()

  b圆心决定圆的位置。()

  c直径是半径的2倍。()

  d圆的半径都相等。()

  e两端在圆上的线段是圆的直径。()

  2、必做题:

  完成61页6、8题。

  3、选做题:60页第四题、61页第九题。

  五课堂小结

  这节课的学习我知道了我的困惑

  六课堂达标

  一.填空。

  1.在一个直径是8厘米的圆里,半径是()厘米

  2.在同一圆内,所有的()都相等,所有的()也相等。()的长度等于()长度的2倍。

  3.通过圆心并且两端都在圆上的线段叫做(),用字母()表示。

  4.在一个圆里,有()条半径、有()条直径。

  5.()确定圆的位置,()确定圆的大小。

  6.圆中心的一点叫做(),用字母()表示,它到圆上任意一点的距离都()。。

  7.画圆时,圆规两脚间的距离是圆的( )。

  8.连接圆心和圆上任意一点的线段叫做(),用字母()表示。

  二.判断。

  1.在连接圆上任意两点的线段中,直径最长。()

  2.同一个圆中,半径都相等。()

  3.直径都是半径的2倍。()

  4.画一个直径是4厘米的圆,圆规两脚应叉开4厘米。()

  三、选择题。

  1.圆是平面上的()。

  ①直线图形②曲线图形③无法确定

  2.圆中两端都在圆上的线段。()

  ①一定是圆的半径②一定是圆的直径③无法确定

  3.圆的直径有()条。

  ① 1 ② 2 ③无数

  四.按要求画圆,并在图上用字母标出圆心、半径、直径。

  1.半径是12厘米。 2.直径是12厘米。

圆的认识教学设计6

  教学目标:

  1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。

  2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的`直径或半径。

  3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。

  教学重难点:

  掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。

  教学准备:

  多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、小剪刀一把。

  教学过程:

  一、导入新课

  1、导入:同学们玩过投圈游戏吗?如果现在有几位同学要进行投圈比赛,站成什么形状比较合理?今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。

  2、你见过圆吗?生活中你在哪儿见过?

  3、想办法画圆。

  二、探究新知

  1、认识圆心、半径、直径

  2、在同一个圆里半径和直径的长度有什么关系?教师板书:d=2r或r=1/2d

  3、用圆规画圆。

  三、拓展延伸

  生活中的车轮为何是圆的,车轴应该装在哪里?

  四、全课总结

  板书:圆的认识

  1、各部分名称:or(无数条)d

  2、d=2r或r=1/2d(同圆或等圆)

  3、画法:定圆心、定半径、旋转一圈

圆的认识教学设计7

  一、教材分析

  (一)、教学设计理念

  地位学情:人教版小学数学第十一册圆的认识是在学生认识了长方形、正方形、三角形等平面图形后所要认识的小学阶段的最后一种图形。学生认识圆应把握它的特点,借助多媒体使学生体会到圆所蕴涵的美学特征与文化积淀。本课教学针对的是六年级学生,他们已初步具有处理信息和网络上自主学习的能力,特别是结合远程多媒体教学使这成为现实。信息技术与课程整合,学生是学习过程的主体,远程多媒体教育网络成为学生学习的重要平台。

  理念设想:学生不是一张白纸,有着丰富的生活体验和知识积累。数学教学应适合学生认知水平,建立在学生主观愿望及知识经验上。提供充分活动和交流机会,引导学生自主探索,理解掌握基本的数学知识技能思想及方法经验,加强数学与生活的联系,彰显美学价值,让学生感受到圆与人们的生活、建筑、人文艺术和实际应用等息息相关。

  (二)、目标设置

  根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标。

  1、知识目标:认识圆各部分名称,掌握圆的特征和画圆的方法。

  2、技能目标:在已有知识经验基础上,熟练掌握用圆规画圆,培养学生实际操作能力。

  3、情感目标:通过生动画面、图像、演示让学生感受生活中圆的存在与作用,感受其神奇与蕴含的美学价值。

  根据本课的设计理念和目标设置确定本课的教学重点即通过多媒体认识圆各部分名称,掌握圆的特征。

  教学难点在于掌握圆的特征,能熟练地画圆。

  (三)、教法、学法

  根据本课的目标设置和重难点特制定

  1、教法:以学定教、合作探究如情景陶冶法等。

  2、学法:顺学而导、互助学习如师生互动学习法等。

  二、教学流程

  (一)、情景导入

  通过多媒体、课件演示,创设情景,展现大自然中随时都有圆的存在。让学生感受到圆的神奇进而激发学生的学习兴趣,顺利地导入到新课之中。(课件展示,宇宙星际、其它星球、地球、月亮和生活中的日落等美景以及大自然中的物体如鲜花等)

  (二)、探究新知

  1、创作圆:

  学生在准备好的纸上作圆,方法工具不限。同时教师课件演示一两种作圆的过程方法,以启迪学生。)

  2、学生完成后我会提问:

  (1)你是用怎样的方法画的?在学生作答间我会适时做出科学的评语固定的一点叫做圆心,用字母O表示。从圆心到圆上任意一点的线段叫做半径,用字母

  r表示。通过圆心且两端都在圆上的线段叫做直径,用字母d表示。(课件圆的画面及各部分的名称展示)

  (2)同时根据课件图片请学生分析圆上、圆内、圆外和圆心各指什么?我再适时讲解加深学生的理解。

  3、学生探索

  (1)此时我会播放课件--以半径旋转并标有直径的圆,请学生观察分析并且提问你发现了什么?学生会发现直径是半径的两倍等。

  (2)我再结合课件图片总结:圆的半径在旋转中,与圆的直径重合时,半径只有直径的一半,由此得出:r=d/2d=2r

  给答对的学生给予奖励、以激励学生的积极性。(同时课件展示两个分别以半径和直径旋转的圆)

  (3)接下来我会再问那圆有多少条半径和直径呢?为什么?学生自己看着旋转的.圆自己总结,我适时做出评述圆的半径有无数条、直径也有无数条、在同圆或等圆中所有的半径相等直径也相等,圆心确定圆的位置、半径确定圆的大小

  4、知识延伸

  (1)我会向学生提问:刚才同学们画圆时都用到了些什么工具和方法啊?和大家交流借鉴一下经验好吗?学生:学生会说出不同的方法和工具我再课件播放(可能会用到的工具如硬币、线、笔、圆规等)。

  (2)此时我会装作很着急的样子向学生问:老师想画一个直径8厘米的圆可不可以用一块钱的硬币哦?为什么啊?生:学生会从大小不符合等方面来说明不行。此时我又会说那我要是想画一个半径6厘米的圆又该怎么办呢?为什么啊?生:可能会比较为难(我再适时从大小符合以及方便等方面慢慢导出学生说出用圆规画)

  (3)接下来我再小结得出画大小不同的圆我们通常用圆规来画并播放课件圆规确定半径的方法以及圆规画圆的方法的重复过程(并得出结论用圆规画圆可以画出大小不同的圆、也可以得到我们想要的圆,再次论证得出半径越大,圆就越大。半径越小、圆就越小)

  (三)、知识反馈

  1、请同学们用圆规画出一个半径5厘米的圆并用字母标出圆心、半径和直径,画好之后相互检查以巩固刚才所学的方法。

  2、测试、学生举手回答并说出理由(课件展示)

  A、

  图(1)中直径是()

  (图1)半径是()

  B.圆规两脚分开距离是4厘米,画出的圆直径是()(图2)

  C.图(2)中长方形的长是(),宽是()

  3、解释生活中的圆的相关运用如:

  (1)车轮为什么是圆的?

  (2)飞标标靶的靶圈为什么是圆的?我会适时引导加以巩固。

  (四)、知识拓展

  1、史料连接:有关圆的知识、名言、名句以及网页链接等,通过课件展示使学生体会到圆所蕴涵的历史与文化积淀、激发学生学数学、用数学的激情以及在以后的数学学习中更加用心。(课件展示)

  2、圆与生活:(课件展示圆与人们的生活如鲜花、日落、小桥流水、雄壮美丽的建筑物以及日常生活中常见的一些体现有圆的应用的物体等等,使本课知识得以拓展,学以致用,体现数学来源于生活而又返回到生活中去,使学生感受到学数学、用数学,数学无处不在。)

  三、板书设计

  圆的认识

  无数条r=d/2d=2r

  直径半径

圆的认识教学设计8

  教学目标:

  知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,

  理解在同一个圆内直径与半径的关系。

  能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;

  转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。

  德育目标:让学生养成在交流、合作中获得新知的习惯。

  教学重点:探索出圆各部分的名称、特征及关系。

  教学难点:通过动手操作体会圆的特征。

  教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。

  教学过程:

  一、创设情境、激发兴趣:

  1、创设情境

  师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。

  师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?

  生:因为一号的赛车,轮子是圆的。

  师:其它的车手为什么会比一号的赛车慢呢?

  生:因为它们的轮子是方形,是三角形,有棱有角的。

  2、联系生活、举例说明

  师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。

  师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识

  二、自主探索,初步体验:

  1、第一次自主探索画一画。

  师:你能创造出一个任意大小的圆吗?

  生:能。

  师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?

  学生进行小组合作,分工创造圆。

  生:进行小组反馈。

  教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……

  师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?

  学生说一说各种画法的缺陷:(

  1、利用圆形轮廓描和印圆,方便但圆的大小固定。

  2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。

  3、旋转形成圆不能留下痕迹。

  4、圆规画圆,方便且一定大小的圆都能画)

  师:那你认为这么多方法中用什么画圆最科学最方便?

  生:用圆规画圆最方便。

  2、第二次尝试画一画-----用圆规画圆。

  师:那请同学们用圆规自已尝试画一个圆。

  没有画成功的同学把图案展示,我们愿意帮助你寻找原因。

  生:(

  1、画移位的,

  2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?

  学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)

  师:学生根据老师的讲解独立画圆。

  师:大家画的圆的位置都一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为刚针戳的位置不一样,(或点的位置不一样)

  师:看来这个点能决定圆的位置,(板书:能决定圆的位置)

  师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为我们圆规的开口大小不一样。

  生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)

  师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。

  三、认识圆各部分名称及探究其特征:

  ①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)

  提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)

  师:仔细观察一下,这些折痕总在圆的.什么地方相交?(圆中心一点)

  教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)

  师:圆心一般用字母o来表示。(板书:o)

  教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。

  游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。

  ②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

  通过测量引导学生发现:圆心到圆上任意一点的距离都相等。

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)

  提问:谁能说一说什么样的线段叫做半径?

  教师说明:半径一般用字母r来表示。(板书:r)

  教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?

  启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。

  ③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)

  学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)

  提问:谁能说一说,什么样的线段叫做直径?

  启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。

  教师说明:直径一般用字母“d”来表示。(板书:d)

  教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?

  引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。

  ④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?

  ⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)

  引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。

  师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。

  师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)

  ⑥练习:出示课件填表。

  ⑦巩固练习:出示判断题。

  四、转回课前问题:

  为什么车轮做成圆形的能得冠军呢?

  (让学生结合今天所学知识解决此题。)

  五、课后作业:

  用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。

  六、板书设计:

  圆的认识

  圆心O ——能决定圆的位置(定点)

  半径r

  ——能决定圆的大小(定长)

  直径d

  同圆半径

  无数条且长度相等

  (等圆)直径

  d=2r或r=d=

圆的认识教学设计9

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页“圆的认识一”。

  【教学目标】

  1、结合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

  3、通过观察、操作、想象等活动,发展空间观念。

  【教学重、难点】

  1、圆的特征。

  2、画圆的方法。

  【教具、学具准备】

  1、三角尺、直尺、圆规。

  2、教学课件。

  【教学设计】

  一、观察思考。

  1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。

  2、观察这些图形与我们以前学过的图形有什么不同?

  生活中还有哪些物体的.面是圆形?

  做套圈游戏,哪种方式更公平?

  二、画一画。

  你能想办法画一个圆吗?

  用手比划着画圆。

  用一根线和一支笔画圆。

  用圆规画圆。

  2、教学用圆规画圆的方法。

  三、认一认。

  学生用圆规画一个圆。

  讨论:圆规的“尖”、圆规张开的两脚之间的长度所起的作用。

  告诉学生半径和圆心。

  四、画一画、想一想。

  要求学生画一个任意大小的圆,并画出它的半径和直径。

  观察比较得知:圆有无数条直径,无数条半径。

  在同一个圆内直径都相等,半径都相等。

  以点A为圆心,要求学生以A为圆心画两个大小不同的圆。

  画两个半径都是2厘米的圆。

  五、讨论。

  圆的位置与什么有关系?

  圆的大小与什么有关? 使学生通过观察日常生活中的圆形物体,建立正确的圆的表象。

  使学生在动手操作中体会圆的本质特征。

  让学生进一步体会圆的本质特征。

  让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。

  六、观察与思考。

  1、播放课件。

  动物王国自行车比赛。分别有圆形、椭圆形、正方形的车轮。

  思考:车轮为什么是圆形?

  操作:

  用硬纸板分别剪一个圆形、正方形、椭圆形。

  小组合作描出运动轨迹。

  七、练一练。

  课本练一练题目。

  八、全课小结。

  【教学反思】

  圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。

圆的认识教学设计10

  一、教学目标

  1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。

  2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。

  二、教学线索

  (一)在活动中整体感知

  1.思考:如何从各种平面图形中摸出圆?

  2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。

  (二)在操作中丰富感受

  1.交流:圆规的构造。

  2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。

  3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?

  4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。

  (三)在交流中建构认识

  1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。

  2.思考:半径有多少条、长度怎样,你是怎么发现的?

  3.概括:介绍古代数学家的相关发现,并与学生的'发现作比较。

  4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

  5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?

  (四)在比较中深化认识

  1.比较:正三角形、正方形、正五边形……中类似等长的“径”各有多少条?圆的半径又有多少条?

  2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?

  (五)在练习中形成结构

  1.寻找:给定的圆中没有标出圆心,半径是多少厘米?

  2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?

  3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。

  4.沟通:用圆规如何画出指定大小的圆?

  (六)在拓展中深化体验

  1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。

  2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。

圆的认识教学设计11

  教学内容

  苏教版九年义务教育小学数学第十一册第115~118页。

  目标预设

  知识技能在尝试画圆的过程中领悟画圆的方法,会正确使用圆规画圆,能结合自学、交流、探索等活动,准确理解“圆心、半径、直径”等概念。

  数学思考引导学生经历探索、发现、创造、交流等丰富多彩的数学活动过程,并在这一过程中深刻把握圆的特征,发展学生的空间观念和数学交流能力。

  问题解决使学生学会从数学的角度认识世界、解释生活,逐步形成“数学地思维”的习惯。

  情感态度使学生初步体会圆的神奇及其所包蕴的美学价值。

  教学过程

  一、现象激趣,引入探究

  1.交流:生活中,你在哪儿见到过圆?通过交流,使学生感受到生活中圆无所不在。

  2.结合波纹、向日葵等事物,进一步带领学生领略圆的神奇,激发学生的探究欲望。

  二、分层探究,体悟特征

  1.画圆剪圆──首次感知。

  (1)学生尝试画圆。通过交流,在师生互动过程中帮助学生掌握圆规画圆的方法,并将“画指定半径的圆”这一要求巧妙地孕伏其中。

  (2)剪圆。既帮助学生感知圆的特征,又为下面的探究活动准备素材。

  2.认识概念──初尝成功。

  结合学生的原有经验和教师提供的“学习材料”,引导学生通过自学、交流、操作等活动。自主建构起对圆心、半径、直径等概念的理解。为探究活动做好认知层面的铺垫。

  1.开放探究──体验特征。

  先通过交流,引导学生初步明确探究方向。在此基础上,引导学生以小组为单位,结合手中的圆片和教师提供的相关支持性材料,共同研究圆的特征,并将研究过程中的发现记录下来。教师以合作者、组织者的身份介入学生的研究活动。对有困难的研究小组提供支持。并收集学生中有价值的发现,以备交流。

  2.交流展示──共享发现。

  将学生探索过程中生成的具有代表性的发现汇集成“我们的发现”,并引导全班学生相互交流。共同分享,深化理解,直至建构起对于圆的完整、系统的认识。

  二、实践拓展,文化渗透

  1.基本练习。

  (1)判断:图中的哪一条线段是圆的半径或直径?(图略)

  (2)口答:根据半径求出直径。根据直径求出半径。(题略)

  (说明:本项练习没有单独设置。而是结合上面的“交流展示”环节,在师生互动的过程中自然穿插。)

  2.史料链接。

  介绍我国数学史上关于圆的研究记载,比如“圆,一中同长也”(《墨经》)、“圆出于方,方出于矩”(《周髀算经》)、“没有规矩,不成方圆”(《周髀算经》),拓宽学生的数学视野。此外,教师结合相应史料的介绍,比如“圆出于方,方出于矩”,将一些联想题、开放题自然穿插其中,既渗透了数学历史、文化,又培养了学生的思维能力与想像能力。

  3.解释应用。

  引导学生运用圆的特征解释生活中常见的自然现象,比如“水纹为什么是圆形的”,“盛开的向日葵为什么是圆形的”等,帮助学生进一步深化对圆的.特征的认识。并学会从数学的角度观察和理解生活。

  4.圆与人文。

  借助多媒体,直观地为学生展示圆在人类历史、生活、文化、审美等各个层面的广泛应用,比如“圆与桥梁设计”、“圆与中国剪纸”、“圆与中国结”、“圆与中外建筑”、“圆与著名标志设计”等,引导学生感受圆与人类生活的密切关联,体会圆的美学与人文价值。

  教学反思

  数学也是一种文化,《数学课程标准(实验稿)》在前言中明确指出:“数学的内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我们着眼“过程”与“凝聚”进行了初步的探索。

  1.数学发展到今天,人们对于她的认识己经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程中得以自然建构与生成。

  2.承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。基于此,教学伊始,我们选择从最常见的自然现象引人,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,拓宽学生的知识视野;最后,我们更是借助“解释自然的圆”和“欣赏人文的圆”等活动,帮助学生在丰富多彩的数学学习中不断积累感受、提升认识,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源

圆的认识教学设计12

  教学目标:

  1、让学生在操作、体验中认识圆,知道圆各部分的名称,掌握圆的特征,能正确画圆,初步利用圆的知识解释一些日常生活现象。

  2、通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念,发展数学思考。

  3、通过学习,进一步体验图形与生活的联系,感受平面图形的学习价值,提高学生对数学的好奇心与求知欲,体验数学活动的意义和作用。

  教学重点:

  掌握圆的各部分名称,圆的基本特征,学会用圆规画圆。

  教学难点:

  归纳圆的特征。

  教学准备:

  老师准备、教具圆规,学生每人准备一张白纸、一把圆规、两个大小不一的圆片。

  教学过程:

  一、溯源生活,导入新课

  1.欣赏,走进圆的世界。

  师:老师给同学们带来了一些图片,我们一起来看看吧。

  师:这些图片中有什么相同之处?

  (都是圆形物体。)

  2.揭示课题。

  今天这节课我们就一起走进圆的世界去探寻圆的奥秘。板书课题:圆的认识

  3.师:生活中很多物体的面是圆形的,同学们能说说你们在哪儿看到过圆吗?

  让学生说一说。

  二、操作体验,感悟特征

  1、教学画圆

  师:说了这么多的圆,你想不想亲自动手画一个圆?(想)

  师:现在请同学们利用手中的工具画一个圆,会吗?在白纸上试着画一个。

  学生动手画圆。

  引导学生交流所画的圆,并说说是怎样画的。

  师:你能告诉老师用什么画的吗?有不是用圆规的画的吗?

  师:你能告诉我为什么你们都喜欢用圆规画呢?

  小结:用圆规画得圆很标准而且方便。

  师:现在请同学们用圆规在纸上画一个圆。

  师巡视,找出失败的作品。

  师:同学们,你们觉得这些圆画得怎么样?

  师:这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?

  (1是没有固定好有针的那个脚;2是两脚之间的距离变化了;3是可能不会旋转;4拿圆规方法不对。)

  师:其实同学们发现了没有,刚才你们说得问题就是在画圆的时候应该注意的地方。

  师示范画圆。边画边说步骤。

  第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)

  第二步:把有针尖的一只脚固定在一点上。(板书:定点)

  第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)

  强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。

  师:现在,掌握了这些要求,有没有信心比刚才画得更好?

  学生画圆。

  师:刚刚老师发现,同学们画的圆有的大有的.小,你们知道为什么会这样吗?

  (画的时候圆规两脚之间的长度不一样。)

  师:现在老师想请同学们画同样大小的圆,你们有办法吗?谁来帮老师想个办法?

  师:好,现在我们就把圆规两脚间的距离统一定为4厘米。

  师:大家动手画一个。圆我们画好了,但是如果有人要你介绍这个圆,你怎么说呢?

  2.教学圆的各部分名称。

  (如果有学生说出半径、直径这类的词)师:刚才同学们用到了半径、直径,我们把它写下来好吗?(板书)那么什么是半径、直径呢?下面我们把课本翻到94页,例2下面的一段话会告诉你答案,自学例2下面的一段话。

  师:现在你会介绍了吗?什么叫半径呢?(引出下面的教学内容。)

  师:那什么是圆的圆心呢?(针尖固定的一点是圆心。)

  学生说,教师在黑板上标出。圆心通常用大写字母O表示。

  师:圆心有什么作用?它可以确定圆的什么?

  师:刚刚同学介绍说半径是连接圆心和圆上任意一点的线段。圆心我们已经知道了,那什么是圆上任意一点呢?你能找一找吗?你会画半径吗?

  指名学生上黑板上画半径。其余学生在自己画的圆上画好。

  师:半径通常用字母r表示。请同学们在自己的圆上标出。

  师:什么是直径?(通过圆心,两端都在圆上的线段。)

  师:老师这里在圆上画了一些线段,现在请同学们来帮忙判断是不是直径,可以吗?

  师:好,请同学们在自己的圆上画上直径,直径我们可以用字母d表示,请同学们标出。

  师:下面老师想考考大家,找出下面圆的直径和半径。(让学生说明是怎样想的。)

  3.探究圆的基本特征。

  师:我们已经认识了圆的圆心、半径、直径。大家想不想再深入地研究一下圆呢?单单圆心、半径、直径里面就蕴藏着很多知识,你想研究吗?

  师:接下来请同学们拿出信封里的圆片,同桌之间一个大圆,一个小圆。请同学们折一折,画一画,量一量,比一比,议一议。相信同学们肯定有精彩的发现。

  (1)圆有无数条半径和直径。

  师:你是怎么发现的?

  学生可能是通过画发现的,也可能是推想的。

  (2)在同一个圆里,半径的长度都相等,所有的直径长度都相等。

  预设:如果学生没有说是在同一个圆里,那教师就及时追问:你的圆的半径跟你同桌圆里的半径一样长吗?跟老师黑板上画的圆的半径一样长吗?那怎么说更好呢?

  师:你是怎样发现的,能说一说吗?

  学生说明。有些学生是折的,有些学生是量的。

  (3)同一个圆里直径是半径的2倍。

  师:你是怎么知道的?

  学生可能说是观察到的,也可能是量的。

  师:你会用含有字母的式子来表示它们之间的关系吗?

  d=2r r=d÷2

  师:如果老师告诉你圆的半径或者直径,你能说出它的直径或者半径吗?

  师:好,那老师就来考考大家。

  (出示练习十七第1题。)

  (4)圆是轴对称图形,有无数条对称轴。

  师:你是怎么知道的?

  师:还有其他发现吗?

  师:刚才大家通过自己的努力又发现了圆这么多的特征,看来只要善于观察,善于探索,善于研究,就会有意想不到的收获。

  三、巩固练习,深化认识

  师:接下来,老师有几个问题想请同学们解答一下,你们愿意吗?

  出示判断题

  (1)直径长度是半径的'2倍。()

  (2)圆心决定圆的位置,半径决定圆的大小。( )

  (3)画一个直径4厘米的圆,圆规两脚的距离应该是4厘米。( )

  (4)在同一个圆内只可以画100条直径。 ( )

  四、走进历史,探索信息

  师:今天我们一起认识了圆。其实,早在两千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:&ldqu;圆,一中同长也。&rdqu;你怎么理解这句话?

  师:我国古代这一发现要比西方整整早一千多年。说到这里你有什么想法!

  师:其实在我们古代对圆的研究远不止这些,有兴趣的同学可以利用课余时间通过网络去了解。现在老师还为大家带来了一个古代的圆,你们认识吗?对了,这是我们古代的太极图,有句话说,太极生两仪,两仪就是我们图上的黑和白,表示阴和阳。谁来说说看这幅图是由什么构成的?

  师:原来它是用一个大圆和两个同样大的小圆组成,假如小圆的半径是3厘米,你又能知道哪些信息呢?

  师:同学们发现的信息还真不少,只要同学们肯动脑筋,善于联系,在以后的学习中肯定会有更多收获。

  五、全课总结

  师:在古代我们很早有了圆的发现和研究,在现代圆一直扮演着重要的角色,并一度成为美的使者和化身。接下来我们一起再来欣赏一下关于圆的一些图片。感觉怎么样?美吗?想说点什么吗?

  师:的确圆是非常漂亮的图案,以前有位思想家说过,圆是世界上最美丽的图形。可见这句话不是随便说的,那么其中到底蕴涵了什么深沉的意义呢?这个问题就留给同学们课后思考。相信随着你们学识的增长,会有更多更深的理解。

圆的认识教学设计13

  教学内容:

  人教版六年制小学数学第十一册第四单元“圆”的起始课。

  教学目标:

  1、认识圆的特征,初步学会画圆,发展空间观念。

  2、在认识圆的过程中,感受研究的一般方法,享受思维的乐趣

  教学重难点:

  教学重点:掌握圆的特征,理解同圆或等圆中半径和直径的关系。

  教学难点:画圆

  教学准备:

  教具、学具准备。

  教具准备:

  圆规、三角板、多媒体课件。

  学具准备:

  圆规直尺、铅笔

  课前学习活动。

  (1)观察生活中的圆。

  教学程序及设计理念

  一、创设情境激发兴趣

  1、引言:对于圆(板书“圆”字),同学们一定不会感到陌生吧?说说生活中,哪些物体的形状是圆的?

  2、多媒体课件播放精美图片,让学生感受生活中丰富多彩的圆。

  3、揭示课题。

  (板书课题:圆的认识)

  二、在画圆中感受新知

  1、我们一起回顾我们昨天预习的情况。

  2、体会画圆的多种方法。

  3、在观察中体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。

  4、在操作中丰富感受

  (1)操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。

  (2)体会(学生第二次画圆):如果方法正确,为什么用圆规画不出直线图形或是其它的曲线图形?

  (3)引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的'恒等,恰是“圆之所以为圆”的内在原因。

  5、在交流中建构认识

  (1)引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。

  (2)思考:半径有多少条、长度怎样,你是怎么发现的?

  (3)概括:介绍古代数学家的相关发现,并与学生的发现作比较。

  6、类比:先介绍直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

  三、实际应用、深化认知

  1、车轮为什么做成圆形,车轴应该装在哪?

  2、篮球场的中间为什么有圆。

  3、扣子的扣眼应该开多大的口?

  板书设计:

  圆的认识

  圆心O

  半径r

  o无数条相等

  直径d

圆的认识教学设计14

  教学目标

  1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、通过观察、操作、想象等活动,发展空间观念。

  教材分析

  重点

  在观察、操作中体会圆的特征。知道半径和直径的概念。

  难点

  圆的特征的认识及空间观念的发展。

  教具

  教学圆规

  电化教具

  课件

  教学过程:

  一、 观察思考

  1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。

  2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。

  3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)

  4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。

  二、画圆

  1、你们谁能画出圆来吗?动手试一试。

  2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。

  3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)

  三、认一认

  1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。

  2、半径和直径的辨认。

  3、

  四、画一画,想一想

  1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直

  径呢?(放动画)

  2、以点A为圆心画两个大小不同的圆。

  3、画两个半径都是2厘米的圆。

  4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?

  五、应用提高

  讨论:圆的位置和什么有关系?圆的大小和什么有关系?

  六、作业

  1、教材第5页练一练

  2、在平面上先确定两个不同的点A和B,再画一个圆,使这个圆同时经过点A和点B(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)

  训练学生的观察能力,发现问题的能力

  不直接说出圆,把思考的空间留给学生

  在画图中体会圆的特征

  思考共同之处时再一次体会圆的特征

  通过正反例的`练习,加深对半径和直径的理解

  动手操作,理解画圆的关键是定圆心(位置)和半径(大小)

  巩固提高,满足不同学生要求

  板书设计

  圆的认识(一)

  圆(本质特征):圆上各点到定点(半径)的距离都相等。

  圆的画法:

  圆的相关概念:圆心,半径,直径

  同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。

  教学后记

  在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆

  的半径的作用能理解,掌握了本课的重点内容。

圆的认识教学设计15

  教学目的:

  1、通过折一折、数一数、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。

  2、了解、掌握多种画圆的方法,并初步学会用圆规画圆。

  3、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

  4、渗透知识来源于实践、学习的目的在于应用的思想。

  教学重、难点:

  掌握圆各部分的名称及圆的特征。圆的画法的掌握。

  教具准备:

  多媒体课件、圆形纸片、圆规、直尺等。

  学具准备:

  直尺、圆规、圆形纸片等。

  教学主要过程:

  一、创设情景,激发学习兴趣。

  师:孩子们,见过平静的水面吗?生:见过。

  师:丢进一块石头,你发现有什么变化?生:荡起一个个波纹。

  师:这些波纹是什么形状的呢?生:圆形的。

  师:这样的现象在大自然中随处可见。生活中,你在哪些地方见到过这些图圆形呢?

  生:……

  师:对了,生活中的很多地方都能看到圆形,老师这里也收集了一些,请看!(课件播放)盛开的向日葵,被切开的橙子……)师:同学们,在上面你同样找到圆形了吗?生:找到了。

  师:有人说,因为有了圆,我们的生活才变得多姿多彩。这节课就让我们一起走进圆的世界探寻其中的奥秘吧

  二、圆与平面图形的区别。

  师:老师的信封里也有一个圆,想看一看吗?生:想。

  师:可是除了圆还有一些其他的平面图形,也想看一看吗?(老师一一拿出来,生说名称)师:(课件)好样的,如果要从这一些平面图形把它给摸出来,觉得有没有难度?生:没有。

  师:怎么会没有难度呢?

  生:其他的有棱角,直直的,而圆是圆圆的。摸起来很光滑。师:这些图形都是由什么围成的?(课件)生:线段围成的。

  师:而圆的边事弯曲的,所以我们说圆是由一条曲线围成的图形。(课件)师:找到他们的区别后有没有信心把圆从里面摸出来?生:有。

  师:可是事情还是没那么简单,里面除了圆还有其它曲线图形。(拿出)生:(惊讶)

  师:同学们瞧。这个图形它也是由曲线围成的。同学们会不会把它当成圆形摸出来呢?

  生:不会。这个曲线图形表面凹凸不平,而圆是很光滑的。

  师:(拿出椭圆)还有呢。这个够光滑吧?你待会儿该不会把它当成圆形给掏出来吧?

  生:不会,因为椭圆看起来扁扁的。而圆很匀称,怎么看都一样。师:说的好,椭圆这样看矮矮的、胖胖的。这样看呢?生:高高的瘦瘦的。

  师:而圆看起来很匀称,怎么看都一样。

  师:通过我们刚才的比较,谁能从这些平面图形中摸出圆?

  师:好,你来吧。闭上眼睛,把手往前伸着,我把这些图形一个个放在你手中,你只需回答是圆不是圆就可以了。下面同学不能提示,根据他的回答作出判断。(动手感知)

  师:真厉害,最热烈的掌声送给他。

  师:刚才我们已经知道,圆是由一条曲线围成的封闭图形。(课件)围成圆的`这一周,我们把它叫做圆上。在圆上的这一点A,我们就说A点在圆上。那外面的呢?我们把它叫做什么?生:圆外。

  师:这里的一点B,外面就说B点在?(圆外)师:里面呢?叫什么?生:圆内。

  三、合作探究认识圆心、半径和直径。这是圆与其他图形的区别,那么圆到底还有哪些特征呢?现在拿出准备的圆形纸片,我们来做个试验。把你的圆对折再对折,多折几次。打开。结合大屏上的三个提示小组内合作探究。看看圆到底还有哪些特征。(课件出示)

  师:相信大家一定会有不少新的发现。(学生合作交流)

  师:你们讨论完了吗?经过数次对折,你发现了什么?生:我发现纸上留下许多折痕。

  生:我还发现这些折痕相交于圆中心一点。师:是这样的吗?一起来看。

  师(课件):经过几次对折打开,纸上留下了这些折痕。你们发现了吗?(板书:长折痕)

  师:(课件)这些折痕相交于圆中心一点,找到这一点了吗?用笔把它点出来。(板书:一点)

  师:我们把相交于圆中心的这一点,叫做圆心,圆心用字母O表示(板书:圆心O)

  师:把你们的也标上字母。

  师:这些折痕,它们有什么共同的特点?生:都通过了圆心。

  师:对了,还有呢?生:两端都在圆上。师:既然两端都在圆上,说明它是一条什么?生:线段

  师:(课件)对了,我们就把通过圆心,并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。

  师:通过刚才的观察,你还发现了什么?

  生:我还发现圆心把这些长折痕平均分成了许多短折痕。

  师:圆心将这些长折痕等分成了很多短折痕。是吗?(板书:短折痕)师:这些短折痕又有什么共同的特点呢?

  生:我发现它们的一端都在圆心,另一端都在圆上。

  师:(课件)像这些连接圆心到圆上任意一点的线段,我们就把它叫做半径。半径用字母r来表示。(板书:半径r)

  师:好,我们来看看,这上面哪些线段是半径呢?(课件)

  师:很好,你能在自己的圆片上画一条半径和直径吗?别忘了表示字母,写上长度。

  师:通过折一折,我们认识了圆心、半径和直径。通过数一数,你又发现了什么呢?

  生:我发现半径有无数条。

  师:半径有无数条,同意的举手。(板书:无数条)光这样说是不够的,你能说出理由吗?生:折无数次

  生:圆上有无数个点。

  师:还有呢?还有理由吗?生(沉默)

  师:不问不知道,一问才知道,原来你们都是懵的啊?你们是懵的吗?生:不是。

  师:哪些不是?(有人举手)有的同学为了捍卫自己的尊严,再次举起了手。好,你怎么想的?

  生:可以自己去画。师:可以去画。现在我们来想象一下,如果给你们足够多的时间,你能画出几条?生:无数条。师:(摇头)前几天唐老师在另一个班上这个内容也探讨了这个问题,最后大家一致认为圆有无数条半径。可是就有一个同学他不相信。回家以后他自己剪了一个圆,在上面密密麻麻画满了半径,一直画的看不到任何空隙了。他数了数一共是三百多条。第二天跑来就问我:唐老师你看!明明才三百多条,你怎么就说有无数条呢?

  生:(举手)换个大点的圆。

  师:他的意思是说:小伙子,你的圆太小了,换个大点的。是吗?

  师:可带来了问题,难道说大圆半径多,小圆半径少吗?或者我们干脆就把结论改为大圆半径有无数条?师:还有不同意见吗?

  生:我认为画半径的笔细一些。

  师:同学们,别小看了刚才同学的想法,他其实一下子就告诉了我们数学最基本的地方。那就是线段它可以无限的细下去。一直细到看不见为止,那这样的话我们就可以说圆有多少条半径?生:无数条。

  师:听听你们的声音,中气都比原来足了。对不对?

  师:圆有无数条半径的特征我们已经探讨的比较清楚了。通过量一量,你还发现了什么呢?

  生:我发现直径是半径的两倍。

  师:你想说的是:直径长度是半径长度的两倍对不对?你的直径长多少?半径呢?

  师:那么你们的直径与半径长度也有这样的关系吗?师:谁能用字母表示直径与半径的关系?生:d=2r

  师:也可以说?生:R=d/2

  (板书:d=2r r=d/2)

  师:除了直径与半径的关系,还有别的发现吗?生:我发现所有的直径长度相等。生:我还发现所有的半径长度相等。

  师:你们呢?所有的直径长度相等吗?所有的半径长度也相等吗?(板书:长度相等)

  师:通过量一量,大家又发现了所有直径长度相等,所有半径长度也相等。师:(收集大小不同的两个圆)好,我们来看,半径相等吗?生:不相等。

  师:刚才你们不是说所有半径长度相等吗?这是为什么呢?生:因为它们不再同一圆内。师:现在你能得出什么结论?

  生:在同一圆内所有的直径长度相等,所有的半径长度也相等。

  师:看来,要使所有的半径长度相等这一特征成立,它必须得有一个很重要的条件,那就是:在同一圆内。(板书:在同一圆内)

  师:(收集一样的两个圆)现在它们在同一个圆内吗?生:没有。

  师:它们的半径长度相等吗?生:相等。

  师:现在你又能得出什么结论?

  生:在一样大的圆里,所有的半径长度相等,所有的直径长度也相等。

  师:说的好不好?除了在同一个圆内,所有的半径长度相等所有的直径长度也相等。在相等的圆里,也是这样。(板书:等圆)

  师:同学们,通过折一折、数一数、量一量,你们都有了哪些发现呢?生:发现了圆心、半径和直径。

  生:也发现了在同一个圆或等圆里直径与半径的关系。师:它们是什么关系?生:d=2r,r=d/2

  生:还发现了圆有无数条直径和半径。生:以及在同一个圆或等圆里所有的半径长度相等,所有的直径长度也相等的特征。师:(课件)孩子们,其实我们的这些发现早在两千多年前就被我国古代思想家——墨子所发现。在他的著作中这样描述了:圆一中同长也。所谓的一中,指的就是一个?(圆心)同长呢?又指什么?生:半径一样长,直径一样长。

  师:这一发现和我们刚才的发现?(完全一致)他的这一发现比西方国家整整早了一千多年。听到这里我想大家都有一个共同的感受,那就是?生:(激动的)自豪!!四、合作探讨圆的画法。

  师:发现了圆那么多的特征,想不想自己动手画一个圆呢?师:那么怎样才能既准确又方便的画出一个圆?生:可以用圆规来画。

  师:对了,古人就曾说过:没有规矩不成方圆。这里的规就是手中的圆规。用来画圆。圆规有两只脚,一只是针尖,用来固定圆心;另一只是画圆用的笔。两只脚可以随意的叉开。你能试着用圆规画一个圆吗?师:(巡视中)老师发现大部分同学都画的比较好,但也有的同学画的不够理想。师:画好了吗?谁来说说画的不够理想的这些同学可能出现了什么问题?生:圆心没固定好。

  生:画的时候没拿手柄,拿到下面了。

  师;你们刚才说到的问题,老师在你们中间找到了证据。一起来看,这张什么问题?(投影展示)

  生:太偏了。应该往中间画。

  师:往中间画?怎样才能画到中间去?生:将圆心固定到纸的中间。

  师:圆心固定在纸的中间,画的圆就在哪里?生:本子中间。

  师:也就是说,圆心觉定了圆的什么?生:圆的位置。

  师:说的非常正确。圆心决定了圆的位置。再来看看这幅有什么问题?生:没连上。师:能连上吗?生:不能。

  师:猜猜看,估计是什么原因导致的?

  生:肯定在画的时候改变了两脚直间的距离。师:同意他的看法吗?生:同意。

  师:圆规两脚之间的距离也就是圆的什么?生:圆的半径。

  师:再接着画下去,是越大还是越小?生:越小。

  师:所以我们说,圆的大小取决于什么?生:半径的长短。

  师:对了,圆的大小是由半径的长短决定的。与圆心的位置无关。师:到底应该怎样使用圆规画圆呢?现在我们一起来看黑板。师:(展示画圆方法)师:孩子们,根据老师刚才的画圆步骤和方法,你能再画一个半径5厘米的圆吗?(学生再次操作画圆)

  师:画好了吗?举起来互相欣赏一下我们的劳动成果吧。五、圆在生活中的运用。

  师:(课件)画好了圆,我们再来看看,这是什么?生:篮球场。

  师:中间是个什么?生:圆。师:中间为什么是个圆而不是个正方形或长方形呢?不知道篮球怎么开赛,回答这个问题还真是有点难。一起来了解一下。(播放开赛录像)

  师:从这段录像我们看见,裁判拿着球在圆心,队员在圆上,比赛一开始,队员就尽量将球传到自己的场地。现在你能解释球场的中间为什么是个圆了吗?生:因为圆心到圆上任意一点的距离都相等。

  师:说的真好。这样大的一个圆,怎么画出来的呢?有这么大的圆规吗?生:没有。

  师:那该怎么画呢?生:……

  师:大家听明白了吗?

  师:不是说,没有规矩不成方圆吗?怎么没有用圆规也能画出一个圆呢?生:规矩不应该特指圆规,而应该指的是画圆的工具。师:看来古人说的没有规矩不成方圆这句话还是对的。六、数学知识解释生活中的现象。师:现在你们能从数学的角度解释平静的水面丢进石子荡起的波纹为什么是一个个圆这一现象了吗?生:……

  师:解释的太棒了。这实际就是在一个圆内,所有的半径长度相等的道理。师:看来简单的自然现象,有时也蕴含了丰富的数学规律。

  师:其实在我们的生活中,除了这些能够用眼看到的圆,还有许多肉眼所看不到的圆。一起来了解一下。

  (课件)太阳美妙的光环、特殊仪器拍摄到的无线电波、说话时声音的传播。师:孩子们,圆在我们的生活中无处不在,因为有了圆,我们的世界才变得如此美妙而神奇。

【圆的认识教学设计】相关文章:

《圆的认识》教学设计01-07

圆的认识教学设计15篇01-22

圆的认识教学设计(精选15篇)08-25

《圆的认识》教学反思05-18

圆的认识教学反思12-27

认识圆的教学反思11-19

圆的认识教学反思05-15

《圆的认识》数学教学反思07-31

圆的认识教学反思(热)07-09