高中数学说课稿
作为一名默默奉献的教育工作者,往往需要进行说课稿编写工作,说课稿是进行说课准备的文稿,有着至关重要的作用。优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的高中数学说课稿,仅供参考,欢迎大家阅读。
高中数学说课稿1
一、教材分析
教材的地位和作用:本节课教学内容是高一(下)第四章4.6节第一课时(两角和与差的余弦)。本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及它们的简单应用。这节内容在高考中不但是热点,而且一般都是中、低档题,是一定要拿到分的题。
教学重点:两角和与差的余弦公式的推导与运用。
教学难点:余弦和角公式的推导以及应用,学会恰当代换、逆用公式等技能。
二、教学目标
(一)知识目标:
1、掌握利用平面内两点间的距离公式进行C(α+β)公式的推导;
2、能用代换法推导C(α-β)公式;
3、初步学会公式的简单应用和逆用公式等基本技能。
(二)能力目标:
1、通过公式的推导,在培养学生三大能力的基础上,着重培养学生获得数学知识的能力和数学交流的能力;
2、通过公式的灵活运用,培养学生的转化思想和变换能力。
(三)情感目标:
1、通过观察、对比体会公式的线形美,对称美
2、通过教师启发引导,培养学生不怕困难,勇于探索勇于创新的求知精神。
三、学情分析:
根据现在的学生知识迁移能力差、计算能力差的特点,第一节课不要太多公式应用。
四、教法分析
1、创设情境----提出问题----探索尝试----启发引导----解决问题。
引导学生建立一直角坐标系xOy,同时在这一坐标系内作单位圆O,并作出角,使角的始边为Ox,交圆O于点,终边交圆O于点;角的始边为O,终边交圆O于,角的始边为O,终边交圆O于点,并引导学生用的三角函数标出点的坐标。并充分利用单位圆、平面内两点的距离公式,使学生弄懂由距离等式化得的三角恒等式,并整理成为余弦的和角公式,从而克服本课的难点。
2、教具:多媒体投影系统。(多媒体系统可以有效增加课堂容量,色彩的强烈对比可以突出对比效果;动画的应用可以将抽象的问题直观化,体现直观性原则。)
五、学法指导
1、能灵活求写角的终边与单位圆的交点坐标,并结合平面几何知识推证出公式。
2、本节的中心公式是,然后对作不同的特值代换可得其他公式,故灵活适当的代换是学好本节内容的基础。
3、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。
在教学过程中,启动学生自主性学习,自得知识,自觅规律,自悟原理,主动发展思维和能力。
六、教学过程
(一)新课引入,产生对公式的需求。
1、学生先讨论“ =cos(450+300)=cos450+cos300是否成立?”。(学生可能通过计算器、量余弦线的长度、特殊角三角函数值和余弦函数的值域三种途径解决问题)。得出cos(450+300)≠cos450 +cos300。进而得出cos(α+β)≠cosα+cosβ这个结论。那么此时又是多少,75°,15°虽然不是特殊角,但有某种特殊性,即可以表示成特殊角的和与差。那么能不能由特殊角的三角函数值来表示这种和角与差角的三角函数值?
2、如果特殊角可以,对一般的两个角,当它的三角函数值已知时,能否求出和与差的三角函数值?即能否用单角的三角函数来表示复角的三角函数呢?提出cos(α+β)又等于什么呢?写出标题。
(二)预备知识
在解决上面的问题之前,我们先来作一点准备,解决“平面内两点间距离的公式”这一问题。
(1)回忆初中学习过的数轴上的两点间的距离公式
(2)通过上面的复习,我们已经熟悉了数轴上两点间距离公式。那么,平面内两点间距离与这两点的坐标有什么样的关系呢?(通过课件演示让学生体会平面内两点间距离和同一坐标轴上两点间距离的关系)
平面内两点间距离公式推导分析:设P1(x1,y1),P2(x2,y2)由勾股定理联想从P1、P2分别作X、Y轴的垂线,则有:M1(x1,0),M2(x2,0),N1(0,y1),N2(0,y2)。通过演示课件P1Q= M1M2=│x2-x1│ QP2= N1N2=│y2-y1│根据勾股定理写出P1P22=P1Q2+QP22=(x2-x1)2+(y2-y1)2。由此得平面内P1(x1,y1)、P2(x2,y2)两点间的距离公式:P1P2= (x2-x1)2+(y2-y1)2
习:P(3,-1),Q(-3,-9)求PQ(建议这部分不要花太多时间)
(3)、复习单位圆上点的坐标表示,为推导公式作铺垫。
(三)公式推导
我们要用α、β、α+β的三角函数来表示α+β的余弦,那么就得作出α、β、α+β的角,构造α、β、α+β的角时,联想建坐标系、作单位圆。(1)分别指出点P1、P2、P3的坐标。(2)求出弦P1P3的长。(3)思考构造弦P1P3的等量关系。当发现|P1P3|可以用cos(α+β)表示时,想到应该寻找与P1P3相等的弦,从而才想到作出角(-β)。
在直角坐标系内做单位圆,并做出任意角α,α+β和-β。它们的终边分别交单位圆于P2、P3和P4点,单位圆与X轴交于P1。则:P1(1,0)、 P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、
1.根据“同圆中相等的圆心角所对的弦相等”得到距离等式
2.将转化为三角恒等式,逐步变形整理成余弦的和角公式。
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2展开,整理得2-2cos(α+β)=2-2cosαcosβ+2sinαsinβ
所以cos(α+β)=cosαcosβ-sinαsinβ.记作
注意:(1)公式的结构特征:左边是两角和的余弦,右边是两两同名函数的积。
(2)公式的记忆口诀:哥哥捡伞伞(用音译,让学生觉得有趣并得以记住公式)
(3)公式的用途:用单角α、β的三角函数来表示复角的α+β余弦
(4)注意强调公式中α、β是任意角。因为α、β是任意角,且两点间的距离公式具有一般性,所以此公式适用于任意角,具有一般性。以后可以用此公式导出其它公式,如用-β去代替β导出C(α-β) 。
(四)公式应用
正因为α、β的任意性,所以赋予C(α+β)公式的强大生命力。
提问:
1、请用特殊角分别代替公式中α、β,你会求出哪些非特殊角的值呢?
让学生动笔自由尝试、主动探索。同学会求cos15°、cos75°、cos105°等。
2、若β固定,分别用代替α,你将发现什么结论呢?
用C(α±β)公式得到证明:让学生发现C(α±β)公式是诱导公式的推广,诱导公式是C(α±β)公式的特殊情况。当其中一个角是的整数倍时用诱导公式较好。
由P1P3=P2P4(同圆相等的
圆心角所对弦相等)及两点
间距离公式,得:
[cos(α+β)-1]2+[sin(α+β)-0]2
=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开整理合并得:
cos(α+β)=cosα cosβ-sinαsinβ这就是两角和的余弦公式。(其中α,β为任意角)将其中β换成-β,公式仍成立:
cos(α+ β)=cosαcosβ -sinαsinβ
cos(α+(-β))= cosαcos(-β)-sinαsin(-β)
化简得两角差的余弦公式:
cos(α-β)= cosαcosβ+sinαsinβ
求证:(1)cos(-α)= sinα
(2)sin(-α)= cosα
证明:
(1)cos(-α)=cos cosα+sin sinα
=sinα
(2)sin(-α)=cos[ -(-α)]
=cosα
证明(1)、(2)的结论即为诱导公式。
例1、利用和(差)角公式求750、150角的余弦。
分析:将750可以看成450+300而450和300均为特殊
角,借助它们即可求出750的余弦。(学生自己完成)
解:cos750 = cos(450+300)
= cos450cos300 -sin450sin300
= ×- ×
=cos150
= cos(450-300)
= cos450cos300+sin450sin300
高中数学说课稿2
各位老师,大家好!
我是08数学本科(2)班的xx,我今天说课的题目是集合的含义与表示.下面我先对教材进行分析.
一、教材分析
集合的含义与表示是选自高中新课标A版教材必修1第一章第一节内容。在此之前,学生已经接触过集合的一些相关概念,如自然数的集合、有理数的集合.集合是一个基础性概念,是数学以至所有科学的基础,应用广泛. 集合是高考的对象,在高考中以选择题或填空题的形式出现,在高考中具有不可忽视的地位.本节内容能够培养学生的探索精神和数学素养.
二、教学目标
根据上述对教材的分析,我确定本节课的教学目标为 1. 知识与技能目标 理解集合的含义,集合的元素的特征,元素与集合的关系. 掌握集合的表示方法. 了解常用的数集.培养学生的抽象思维能力、分析能力、判断能力.
2. 过程与方法目标
应用自然语言与集合语言描述不同的具体问题,与学生一道归纳出集合的含义. 掌握从具体到抽象,从特殊到一般的研究方法.
3. 情感态度价值观目标
使得学生感受数学的简洁美与和谐统一美. 培养学生正确的、高尚的、唯物的价值观.培养学生独立思考、敢于创新、勇于探索的科学精神,激发同学们学习数学的兴趣. 三、重点和难点
重点:根据上述对教材的分析,确定的教学目标,我确定本节课的教学重点为:集合的含义,集合的表示方法.
难点:考虑到学生已有的知识基础与认知能力,我认为教学难点是集合的表示方法. 关键:学好本节课的关键是理解集合的含义,掌握集合的表示方法. 四、教学方法 1.学情分析
(1)生理特点:高中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步走向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.
(2)心理特点:高中学生虽有好奇,好表现的因素,更有知道原理、明白方法的理性愿望,希望平等交流研讨,厌烦空洞的说教.
(3)认知障碍:有的学生遗忘了学过的知识,有的学生想象能力与归纳能力较差. 2.教法学法
根据上面的分析,从高中生的心理特点和认知水平出发,结合学生的实际情况与认知障碍,按照突出重点,突破难点,本节课采用学生广泛参与,师生共同探讨的启发式教学法. 五、教学过程(用描述性语言,不要具体化!)
根据以上分析,我对本节课的教学过程作如下安排:
1.引入课题
先引导学生回顾自然数的集合,有理数的集合,再提出问题:集合的含义是什么呢? 2.新课讲解
(1)分析自然数的集合,有理数的集合,不等式的解集,归纳出它们的共同特征:都是由一些确定的、互不相同的对象组成的整体.
(2)根据上面的分析与讨论,以及归纳出的共同特征,讲解集合的含义,元素与集合的关系,一些常见的数集.
(3)为了化解教学难点,我将结合具体的例子,讲解列举法与描述法.
(4)为了加强学生对集合的含义的理解,我将与学生一起归纳出集合的元素的特征. (5)为了提高学生解决实际问题的能力,我将讲解三个不同题型、不同难度的例题. 3.课堂练习
为了使得学生掌握等差数列的定义与通项公式,提高解题技能,我将在课堂上布置3道不同类型、不同难度的练习题.
4.归纳小结
完成以上的教学内容后,我将组织学生对本节课的内容做一个总结,强调重点. 5.布置作业
为了巩固所学知识,激发学生的求知欲,我将布置3道不同类型、不同难度的作业题. 六、板书设计
结合中学黑板的特点,我将如下板书本节教学内容: 集合的含义与表示 实例 1. 2. 3. 集合的含义 常见数集 元素与集合的关系 集合的表示方法 集合的元素的特征 例1 例2 例3 练习 作业 各位老师,以上只是我的一种预设方案,但课堂千变万化,我将根据实际情况灵活掌握,随机发挥.本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢! 1.1.2集合间的基本关系
数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.
一 、教学内容分析
集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学
习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.
本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.
本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。
二、学情分析
本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:
三、教学目标: 知识与技能目标:
(1)理解集合之间包含和相等的含义; (2)能识别给定集合的子集;
(3)能使用Venn图表达集合之间的包含关系 过程与方法目标:
(1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;
(2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;
情感、态度、价值观目标:
(1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;
(2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。
四、本节课教学的重、难点:
重点:(1)帮助学生由具体到抽象地认识集合与集合之间的关系——子集; (2)如何确定集合之间的关系; 难点:集合关系与其特征性质之间的关系 五、教学过程设计
1.新课的引入——设置问题情境,激发学习兴趣
我们的教学方式,要服务于学生的学习方式。那我们来思考一下,在何种情况下,学生学得最好?我想,当学生感兴趣时;当学生智力遭遇到挑战时;当学生能自主地参与探索和创新时;当学生能够学以致用时;当学生得到鼓励与信任时,他们学得最好。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,这样才能让学生体验到成就感,保持积极的兴奋状态。而集合的语言对于学生来说是陌生的,虽然比较容易理解,但是由于概念多,符号多,学生容易产生厌烦心理,如何让学生长时间兴趣盎然地投入到集合关系的学习中呢?我在整个教学过程中层层设问,不断地向学生提出挑战,以激发学生的学习兴趣。在引入的环节,我设计了下面的问题情境1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢?问题的抛出犹如一石激起千层浪,在这儿,答案并不重要,重要的是学生迫切寻求答案的愿望,激发学生的求知欲。在学生讨论的基础上提出这一节课我们来共同探讨集合之间的基本关系。(板书课题)
2.概念的形成——从特殊到一般、从具体到抽象,从已知到未知 问题情境1的探究:
具体实例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四边形} (3)A={x| x>2}, B={x| x>1};
此环节设置了三个具体实例,包含了有限集、无限集、数集(包括不等式)、图形的集合。第一个例子为有限集数集,最为简单直观,对学生初步认识子集,理解子集的概念很有帮助;第二个例子是图形集合且是无限集,需要通过探究图形的性质之间的关系找出集合间的关系;第三个例子是无限数集,基于学生初中阶段已经学习了用数轴表示不等式的解集,启发学生可以通过数形结合的方式来研究集合之间的关系,从而引出Venn图。对第一个例子,借助多媒体演示动画,帮助学生体会“任意”性。使学生在经历直观感知、观察发现的基础上建构子集的概念,并且我在教学的过程中特别注重让学生说,借此来学习运用集合语言进行交流,对于学生的创新意识和创新结果我都给予积极的评价。
3、概念的剖析
(1)A中的元素x与集合B的关系决定了集合A与集合B之间的关系,
(2)符号的表示,Venn图的引入及其用Venn图表示集合的方法。
这里引入了许多新的符号,对初学者来说容易混淆,是一个易错点,因此我在这里设置了一个填空小练习:
0 {0}, {正方形} {矩形},三角形 {等边三角形} {梯形} {平行四边形},{x|-1
并引导学生类比数与数之间的“≤”“≥”符号来记忆“?”“?”符号。
4、概念的深化——集合的相等与真子集
问题情境2:如果集合A是集合B的子集,那么对于任意的x?A,有x?B;那么对于集合B中的任何一个元素,它与集合A之间又可能是什么关系呢?
高中数学说课稿3
一、教材分析
1、教材内容
本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。
2、教材所处地位、作用
函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。
3、教学目标
(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性
的方法;
(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。
4、重点与难点
教学重点(1)函数单调性的概念;
(2)运用函数单调性的定义判断一些函数的单调性。
教学难点(1)函数单调性的知识形成;
(2)利用函数图象、单调性的定义判断和证明函数的单调性。
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。
2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。
4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。
在学法上:
1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。
三、 教学过程
教学
环节
教 学 过 程
设 计 意 图
问题
情境
(播放中央电视台天气预报的音乐)
满足在定义域上的单调性的讨论。
2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。
3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。
4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。
高中数学说课稿4
各位评委老师好:今天我说课的题目是
是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。
一、 教材分析
是在学习了基础上进一步研究 并为后面学习 做准备,在整个
高中数学中起着承上启下的作用,因此本节内容十分重要。
根据新课标要求和学生实际水平我制定以下教学目标
1、 知识能力目标:使学生理解掌握
2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力
3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于
观察勇于思考的学习习惯和严谨 的科学态度
根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是
二、教法学法
根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。
三、 教学过程
四、 教学程序及设想
1、由……引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:……
2、由实例得出本课新的知识点是:……
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习……
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
五、教学评价
学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应
当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。
高中数学说课稿5
各位老师你们好!今天我要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1. 教材所处的.地位和作用:
本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。
2. 教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3. 重点,难点以及确定依据:
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
重点: 通过 突出重点
难点: 通过 突破难点
关键:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、教学策略(说教法)
1. 教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。
2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3. 学情分析:(说学法)
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学
生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4. 教学程序及设想:
(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:
课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分
高中数学说课稿6
一、教学目标:
知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。
过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。
情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。
二、教学重点、难点:
重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。
三、教学过程:
教学环节
教学内容和形式
设计意图
复习
提问:
(1)圆的定义是什么?圆的标准方程的形式怎样?
(2)如何推导圆的标准方程呢?
激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。
讲授新课
一、授新
1.椭圆的定义:(略)
活动过程:
操作-----交流-----归纳-----多媒体演示-----联系生活
形成概念:
操作:
<1>固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?
在动手过程中,培养学生观察、辨析、归纳问题的能力。
在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。
教学环节
深化概念:
注:1、平面内。
2、若,则点P的轨迹为椭圆。
若,则点P的轨迹为线段。
若,则点P的轨迹不存在。
联系生活:
情境1.生活中,你见过哪些类似椭圆的图形或物体?
情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)
情境3.观看天体运行的轨道图片。
教学内容和形式:
准确理解椭圆的定义。
渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。
设计意图:
2.椭圆的标准方程:
例:已知点、为椭圆的两个焦点,P为椭圆上的任意一点,且,其中,求椭圆的方程
活动过程:点拨-----板演-----点评
一般步骤:
(1)建系设点
(2)写出点的集合
(3)写出代数方程
(4)化简方程:
<1>请一位基础较好,书写规范的同学板演。
(5)证明:讨论推导的等价性
掌握椭圆标准方程及推导方法。
培养学生战胜困难的意志品质并感受数学的简洁美、对称美。
养成学生扎实严谨的科学态度。
应用
举例
教学环节
二、应用
例1.(1)椭圆的焦点坐标为:
(2)椭圆的焦距为4,则m的值为:
活动过程:思考-----解答-----点评
例2.已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离的和等于10,求椭圆的标准方程
活动过程:思考-----解答-----点评
变式<1>已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。
求椭圆的标准方程
活动过程:思考-----解答-----点评
认清椭圆两种标准方程形式上的特征。
课堂小结:
提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?
活动过程:教师提问-----学生小结-----师生补充完善。
让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。
作业布置:
作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、
探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?
分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。
四、板书设计
8.1椭圆及其标准方程
一、复习引入二、新课讲解三、习题研讨
1.椭圆的定义
2.椭圆的标准方程
总体说明:本节课的设计力图贯彻"以人的发展为本"的教育理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。
高中数学说课稿7
各位老师大家好!
我说课的内容是人教 版 A版必修2第三章第一节直线的倾斜角与斜率第一课时。
(一) 教材分析
本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。
(二) 学情分析
本节课的 教学 对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上 知道两点确定一条直线, 知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需 从 学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、 巩固 和应用过程。
(三)教学目标
1. 理解直线的倾斜角和斜率的概念, 理解直线的倾斜角的唯一性和斜率的存在性;
2. 掌握过两点的直线斜率的计算公式 ;
3. 通过经 历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力;
4 . 通过斜率概念的建立以及斜率公式的构建,帮助学生进一步体会数形结合的思想,培养学
生严谨求简的数学精神。
重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难点: 直线的倾斜角与斜率的概念的形成 ,斜率公式的构建。
(四)教法和学法
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。 根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用 设置问题串 的形式 , 启发引导 学生 类比、联想,产生知识迁移 ;通过 几何画板演示实验、探索交流 相结合的教学方法激发学生 观察、实验,体验知识的形成过程 ;由此循序渐进 , 使学生很自然达到本节课的学习目标。
( 五) 教学过程
环节 1.指明研究方向 (3min)
平面上的点可以用坐标表示,也就是几何问题代数化。那么我们生活中见到的很多优美的曲线能否用数来刻画呢?
简介17 世纪法国数学家笛卡尔和费马的数学史 。
【设计意图】 使学生对解析几何的历史以及它的研究方向有一个大致的了解
由此引入课题(直线的倾斜角与斜率)
环节2.活动探究(13min)
【设计意图】 让学生经历探究过程后掌握倾斜角和斜率两个概念,体会概念的产生是自然的,并不是硬性规定的。
(探究活动一:倾斜角概念的得出)
问题1. 如图,对于平面直角坐标系内过两点有且只有一条直线,过一点P的位置能确定吗?如图,这些不同直线的区别在哪里?
【设计意图】引导学生发现过定点的不同直线,其倾斜程度不同。从而发现过直线上一点和直线的倾斜程度也能确定一条直线。
问题2. 在直角坐标系中,任何一条直线与x轴都有一个相对倾斜程度,可以用一个什么样的几何量来反映一条直线与x轴的相对倾斜程度呢?
【设计意图】引导学生探索描述直线的倾斜程度的几何要素, 由此引出倾斜角的概念:直线L与x轴相交,我们取x轴为基准,x轴正向与直线L向上的方向之间所成的角α叫做直线L的倾斜角。
问题3. 依据倾斜角的定义,小组合作探究倾斜角的范围是多少?
(探究活动二:斜率概念的得出)
问题4. 日常生活中,还有没有表示倾斜程度的量?
问题5 . 如果使用“倾斜角”的概念,坡度实际就是 倾斜角的正切值,由此你认为还可以用怎样的量来刻画直线的倾斜程度?
由学生已知坡度中“前进量”不能为0 ,补充 倾斜角 是90゜的直线 没有斜率
【设计意图】 迁移、类比得出 我们把 一条直线的 倾斜角 的正切值叫做 这条 直线的 斜率 , 让学生感受数学概念来源于生活,并体验从直观到抽象的过程培养学生观察、归纳、联想的能力。
环节 3.过程体验(斜率公式的发现)(10min)
问题6. 两点能确定一条直线,那么两点能确定一条直线的斜率么?
先由每名学生各自举出两个特殊的点。例如A(1,2)、B(3,4),独立研究如何由这两点求斜率,再通过学生相互讨论,师生共同交流提炼出解决问题的一般方法,进而把这种方法迁移到一般化的问题上来。得出斜率公式k=y2y1。
为了深化对公式的理解,完善对公式的认识,我设计了如下三个思考问题:
思考1:如果直线AB//x轴,上述结论还适用吗?
思考2:如果直线AB//y轴,上述结论还适用吗?
思考3:交换A、B位置,对比值有影响吗?
在学生充分思考、讨论的基础上,借助信息技术工具,一方面计算 的 值,另一方面计算倾斜角的正切值。让学生亲自操作几何画板,改变直线的倾斜程度,动态演示可以把教科书第84页图3.1-4所示的各种情况都展示出来,形象直观,可使学生更好的把握斜率公式。
环节4. 操作建构(10min)
第一部分( 教材例一 ) : 如图,已知A(3,2),B(-4,1),C(0,-1), 求 直线AB,BC,CA的斜率,并判断倾斜角是锐角还是钝角。
学生独立完成后,请三位学生作答,师生共同评析,明确斜率公式的运用,强调可以从形的角度直接判断直线的倾斜角是锐角还是钝角,也可由直线的斜率的正负判断。
第二部分 ( 教材例二 ) : 在平面直角坐标系中,画出经过原 点且斜率分别为1,-1,2及-3的直线
本题要求学生画图,目的是加强数形结合,我将请两位同学上台板演,其余同学在练习本上完成,因为直线经过原点,所以只要在找出另外一点就可确定,再推导斜率公式时,学生已经知道,斜率k的值与直线上P1,P2的位置无关,因此,由已知直线的斜率画直线时,可以再找出一个特殊点即可。
环节 5.小结作业(4min)
1、本节课你学到了哪些新的概念?他们之间有什么样 的关系?
2、怎样求出已知两点的直线的斜率?
3 、本节课你还有哪些问题?
两点 直线 倾斜角 斜率
一点一方向
作业: 必做题: P.86 第1,2,题
选做题: P.90 探究与发现:魔法师的地毯
以上五个环节环环相扣,层层深入,以明线和暗线双线渗透。并注意调动学生自主探究与合作交流。注意教师适时的点拨引导,学生主体地位和教师的主导作用 得以 体现。能够较好的实现教学目标,也使课标理念能够很好的得到落实。
(六) 板书设计
3.1.1 直线的倾斜角与斜率
1定义: 倾斜角 学生板演
斜率
2.斜率k与倾斜角之间的关系
3.斜率公式
高中数学说课稿8
尊敬的各位专家,评委:
上午好!
根据新课改的理论标准,我将从教材分析,学情分析,教学目标分析,学法、教法分析,教学过程分析,以及板书设计这六个方面来谈谈我对教材的理解和教学的设计。
一、教材分析
地位和作用:
《______________________》是北师大版高中数学必修二的第______章“__________”的第________节内容。
本节是在学习了________________________________________之后编排的。通过本节课的学习,既可以对_________________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。
二、学情分析
1、学生已熟悉掌握______
2、学生的认知规律,是由整体到局部,具体到抽象发展的。
3、学生思维活跃,积极性高,已初步形成对数学问题的合作探究能力
4、学生层次参差不齐,个体差异还比较明显
三、教学目标分析
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
1、知识与技能:
2、过程与方法:通过___学习,体会__的思想,培养学生提出问题,分析问题,解决问题的能力,提高交流表达能力,提高独立获取知识的能力。
3、情感态度与价值观:培养把握空间图形的能力,欣赏空间图形所反应的数学美(认识数学内容之间的内在联系,加强数形结合的思想,形成正确的数学观)。
教学重点:
难点:
四、学法、教法分析
(一)学法
首先,通过自学探究,培养学生的分析、归纳能力,提高学生合作学习的能力,学生课堂中体现自我,学会寻找问题的突破口,在探究中学会思考,在合作中学会推进,在观察中学会比较,进而推进整个教学程序的展开。
其次,教学过程中,我想适时地根据学生的“最近发展区”搭建平台,充分发挥“教师的主导作用和学生的主体地位相统一的教学规律”,
从学生原有的知识和能力出发,指导学生学会观察、分析、归纳问题的能力。
学生只有不断地解决问题、产生成就感的过程中,才能真正地提高学习的兴趣,也只有这样才能“学”有新“思”,“思”有新“得”。
(二)教法
数学教育家波利亚曾经说过:“学习任何知识的最佳途径即是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的发展规律、性质和联系。”根据学生的认知特点和知识水平,为落实重点、突破难点,本着以人为本,以学为中心的思想,本节课我将采用启发式、合作探究的方式来进行教学。运用多媒体演示辅助教学的一种手段,以激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现问题、分析问题和解决问题。
五、教学过程分析
1、创设情境,引入问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。
2、发现问题,探究新知。
数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历
“数学化”、“再创造”的活动过程.
3、深入探究,加深理解。
有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
4、当堂训练,巩固提高。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
5、小结归纳,拓展深化。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
6、作业设计
作业分为必做题和选做题。
针对学生能力和水平的差异,进行分层训练,在所有学生获得共同知识基础和基本能力的同时,让学有余力的学生将学习从课堂延伸到课外,获得更大的能力提升,这体现新课改理念,也是因材施教的教学原则的具体运用。
现代数学教学观和新课改要求教学能从“让学生学会”向“让学生会学”转变,使数学教学真正成为数学活动的教学。所以,本节课我们不仅仅是单纯的传授知识,而更应该重视对数学方法的渗透。从熟悉的知识出发,学生自主探索、合作交流激发学生的学习兴趣,突破难点,培养学生发现问题、解决问题的能力
六、板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;突出本节重难点,能指导教师的教学进程、引导学生探索知识,启迪学生思维。
我的说课到此结束,敬请各位专家、评委批评指正。
谢谢!
高中数学说课稿9
一、教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二、目标分析:
教学重点、难点
重点:集合的含义与表示方法。
难点:表示法的恰当选择。
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性。互异性。无序性;
(4)会用集合语言表示有关数学对象;
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3. 情感、态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性。
三、教法分析
1. 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。
2. 教学手段:在教学中使用投影仪来辅助教学。
四、过程分析
(一)创设情景,揭示课题
1、教师首先提出问题:
(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?
引导学生互相交流。 与此同时,教师对学生的活动给予评价。
2.活动:
(1)列举生活中的集合的例子;
(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1-20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。
一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。
4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流。
让学生充分发表自己的建解。
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。
4.教师提出问题,让学生思考
(1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。
如果是集合A的元素,就说属于集合A,记作。
如果不是集合A的元素,就说不属于集合A,记作。
(2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。
(3)让学生完成教材第6页练习第1题。
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。
6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合
(3)试选择适当的方法表示下列集合:教材第6页练习第2题。
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容?
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:
1.课后书面作业:第13页习题1.1A组第4题。
2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。
高中数学说课稿10
一、教材分析
1、《指数函数》在教材中的地位、作用和特点
《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节资料,是在学习了《指数》一节资料之后编排的。经过本节课的学习,既能够对指数和函数的概念等知识进一步巩固和深化,又能够为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅仅是本章《函数》的重点资料,也是高中学段的主要研究资料之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体此刻细胞分裂、贷款利率的计算和考古中的年代测算等方面,所以学习这部分知识还有着广泛的现实意义。本节资料的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2、教学目标、重点和难点
经过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了必须的认知结构,主要体此刻三个方面:
知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有必须的体会,已初步了解了数形结合的思想。
鉴于对学生已有的知识基础和认知本事的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:
(1)知识目标:
①掌握指数函数的概念;
②掌握指数函数的图象和性质;
③能初步利用指数函数的概念解决实际问题;
(2)技能目标:
①渗透数形结合的基本数学思想方法;
②培养学生观察、联想、类比、猜测、归纳的本事;
(3)情感目标:
①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题;
②经过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的本事;
③领会数学科学的应用价值。
(4)教学重点:指数函数的图象和性质。
(5)教学难点:指数函数的图象性质与底数a的关系。
突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法设计
由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图经过这一节课的教学到达不仅仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而到达培养学生学习本事的目的,我根据自我对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:
1、创设问题情景、按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2、强化“指数函数”概念、引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。
3、突出图象的作用、在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家以往说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,所以图象发挥了主要的作用。
4、注意数学与生活和实践的联系、数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。
三、学法指导
本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情景,我主要在以下几个方面做了尝试:
1、再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮忙学生再现原有认知结构,为理解指数函数的概念做好准备。
2、领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。
3、在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的理解和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
4、注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不一样难度的题目设计将尽可能照顾到课堂学生的个体差异。
四、程序设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的构成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1、创设情景、导入新课
教师活动:
①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子;
②将学生按奇数列、偶数列分组。
学生活动:
①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;
②回忆指数的概念;
③归纳指数函数的概念;
④分析出对指数函数底数讨论的必要性以及分类的方法。
设计意图:经过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;
2、启发诱导、探求新知
教师活动:
①给出两个简单的指数函数并要求学生画它们的图象
②在准备好的小黑板上规范地画出这两个指数函数的图象
③板书指数函数的性质。
学生活动:
①画出两个简单的指数函数图象
②交流、讨论
③归纳出研究函数性质涉及的方面
④总结出指数函数的性质。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的资料有着必须的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,到达进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情景,学生就会很自然的经过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。
高中数学说课稿11
一、说教材:
1、地位、作用和特点:
《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。
本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以
是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是;
特点之二是: 。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课 新课教学
反馈发展
三、说学法:
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出 ,并依
据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过
演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
四、教学过程:
(一)、课题引入:
教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
五、板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
六、说课综述:
以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对
的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高中数学说课稿12
1.教材分析
1-1教学内容及包含的知识点
(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容
(2)包含知识点:点到直线的距离公式和两平行线的距离公式
1-2教材所处地位、作用和前后联系
本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。
可见,本课有承前启后的作用。
1-3教学大纲要求
掌握点到直线的距离公式
1-4高考大纲要求及在高考中的显示形式
掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。
1-5教学目标及确定依据
教学目标
(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。
(2)培养学生探究性思维方法和由特殊到一般的研究能力。
(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。
(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。
确定依据:
中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)
1-6教学重点、难点、关键
(1)重点:点到直线的距离公式
确定依据:由本节在教材中的地位确定
(2)难点:点到直线的距离公式的推导
确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。
分析“尝试性题组”解题思路可突破难点
(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。
2.教法
2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。
确定依据:
(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。
(2)事物之间相互联系,相互转化的辩证法思想。
2-2教具:多媒体和黑板等传统教具
3.学法
3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。
一句话:还课堂以生命力,还学生以活力。
3-2学情:
(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。
(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。
(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。
3-3学具:直尺、三角板
3. 教学程序
时,此时又怎样求点A到直线
的距离呢?
生: 定性回答
点明课题,使学生明确学习目标。
创设“不愤不启,不悱不发”的学习情景。
练习
比较
发现
归纳
讨论
的距离为d
(1) A(2,4),
:x = 3, d=_____
(2) A(2,4),
:y = 3,d=_____
(3) A(2,4),
:x – y = 0,d=_____
尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。
请三个同学上黑板板演
师: 请这三位同学分别说说自己的解题思路。
生: 回答
教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。
视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。
说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形)
师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线
:Ax+By+C=0(A,B≠0)的距离又怎样求?
教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗?
生:方案一:根据定义
方案二:根据等积法
方案三: ......
设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。
师生一起进行比较,锁定方案二进行推证。
“师生共作”体现新型师生观,且//时,又怎样求这两线的距离?
生:计算得线线距离公式
师:板书点到直线的距离公式,两平行线间距离公式
“没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。
反思小结
经验共享
(六 分 钟)
师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问?
生: 讨论,回答。
对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。
共同进步,各取所长。
练习
(五 分 钟)
P53 练习 1, 2,3
熟练的用公式来求点线距离和线线距离。
再度延伸
(一 分 钟)
探索其他推导方法
“带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。
4. 教学评价
学生完成反思性学习报告,书写要求:
(1) 整理知识结构
(2) 总结所学到的基本知识,技能和数学思想方法
(3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因
(4) 谈谈你对老师教法的建议和要求。
作用:
(1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。
(2) 报告的写作本身就是一种创造性活动。
(3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。
5. 板书设计
(略)
6. 教学的反思总结
心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。
高中数学说课稿13
各位评委:下午好!
我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。
一、教材分析
(一)教材的地位和作用
《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。
(二)、学情分析
通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面:
知识层面:学生在已初步掌握了 。
能力层面:学生在初步已经掌握了用
初步具备了 思想。 情感层面:学生对数学新内容的学习有相当的兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡.
(三)教学课时
本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。)
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的教学目标确定为:
知识与技能:
过程与方法:
情感态度:
(例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育)
在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。
三、重难点分析
重点确定为:
要把握这个重点。关键在于理解
其本质就是
本节课的难点确定为:
要突破这个难点,让学生归纳
作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学--建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。
五、说教学过程
本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
(一)创设情景………………….
(二)比旧悟新………………….
(三)归纳提炼…………………
(四)应用新知,熟练掌握 …………………
(五)总结…………………
(六)作业布置…………………
(七)板书设计…………………
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢
著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想?
高中数学说课稿14
说课:古典概型
麻城理工学校谢卫华
(一)教材地位及作用:本节课是高中数学(必修
3)第三章概率的第二节古典概型的第一课时,是在
随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
(二)根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订教学目标:
1.知识与技能
(1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神
(三)教学方法:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征,观
察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
(四)教学过程:
一、提出问题引入新课:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
教师最后汇总方法、结果和感受,并提出问题:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
二、思考交流形成概念:学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。给出例题1,让学生自行解决,从而进一步理解基本事件,然后让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。我们将具有这两个特点的概率模型称为古典概率概型,简称
古典概型。
三、观察分析推导公式:教师提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率
结果,发现其中的联系。实验一中,出现正面朝上的概率与反面朝上的概率相等,即
1“出现正面朝上”所包含的基本事件的个数,试验二中,出现各个点的概率相等,即
P(“出现正面朝上”)==
2基本事件的总数3“出现偶数点”所包含的基本事件的个数,根据上述两则模拟试验,可以概括总结出,古典
P(“出现偶数点”)==
6基本事件的总数
概型计算任何事件的
的理解,教师提问:在使用古典概型的概率公式时,应该注意什么?学生回答,教师归纳:应该注意,(1)要判断该概率模型是不是古典概型;
(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
四、例题分析推广应用:通过例题2及3,巩固学生对已学知识的掌握,提高学生分析问题、解决问题的能力。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。适时利用列表数形结合和分类讨论等思想方法,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。
五、总结概括加深理解:学生小结归纳,不足的地方老师补充说明。使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
(五)布置作业P123练习1、2题(六)板书设计
3.2.13.2.1古典概型古典概型试验一试验二基本事件
古典概型概率
计算公式
例3列表
例1树状图古典概型
例2
以上是我对《古典概型概型》这节课的理解和处理方法,欢迎各位专家朋友批评指正,谢谢!
说课教案:古典概型
麻城理工学校谢卫华
高中数学说课稿15
说教学目标
A、知识目标:
掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
说教学重点:
等差数列前n项和的公式。
说教学难点:
等差数列前n项和的公式的灵活运用。
说教学方法:
启发、讨论、引导式。
教具:
现代教育多媒体技术。
教学过程
一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10。
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。
生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。
上面两式相加得2S=11+10+。。。。。。+11=10×11=110
10个
所以我们得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?
生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。
二、教授新课(尝试推导)
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可写成
Sn=an+an—1+。。。。。。a2+a1
两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n个
=n(a1+an)
所以Sn=(I)
师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。
三、公式的应用(通过实例演练,形成技能)。
1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:
(1)1+2+3+。。。。。。+n
(2)1+3+5+。。。。。。+(2n—1)
(3)2+4+6+。。。。。。+2n
(4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
请同学们先完成(1)—(3),并请一位同学回答。
生5:直接利用等差数列求和公式(I),得
(1)1+2+3+。。。。。。+n=
(2)1+3+5+。。。。。。+(2n—1)=
(3)2+4+6+。。。。。。+2n==n(n+1)
师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。
生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:
原式=—1—1—。。。。。。—1=—n
n个
师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。
例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。
师:(继续引导学生,将第(2)小题改编)
①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。
2、用整体观点认识Sn公式。
例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)
师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?
生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。
师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。
最后请大家课外思考Sn公式(1)的逆命题:
已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。
四、小结与作业。
师:接下来请同学们一起来小结本节课所讲的内容。
生11:1、用倒序相加法推导等差数列前n项和公式。
2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。
生12:1、运用Sn公式要注意此等差数列的项数n的值。
2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。
3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。
数学思想:类比思想、整体思想、方程思想、函数思想等。
作业:P49:13、14、15、17
【高中数学说课稿】相关文章:
高中数学教学设计06-08
高中数学教学计划05-09
高中数学个人学习总结12-10
《颐和园》说课稿07-27
《心声》说课稿07-26
《海燕》说课稿07-26
海燕说课稿07-24
共享说课稿07-23
说课稿模板07-22
《家》说课稿07-20