当前位置:范文派>教学范文>教案>分数乘法教案

分数乘法教案

时间:2023-04-24 12:42:06 教案 我要投稿

分数乘法教案范文汇编七篇

  作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,教案是教学活动的依据,有着重要的地位。那么教案应该怎么写才合适呢?下面是小编为大家整理的分数乘法教案7篇,仅供参考,大家一起来看看吧。

分数乘法教案范文汇编七篇

分数乘法教案 篇1

  分数乘法

  1、分数乘法的意义和计算法则:

  课时:1课时。 总课时:1课时。执行时间:

  课题:分数乘整数。

  教学目的:

  1、 使学生理解分数乘整数的意义;

  2、 握分数乘整数的计算法则,并能够正确地进行计算。

  3、 培养学生的学习兴趣。教具:多媒体教学课件。

  教学过程():

  一、 复习引入

  1、 5个12是多少?怎么样列式?

  算式:12+12+12+12+12=60或12×5=60

  小结:求几个相同加数的和,可以用加法算,也可以用乘法算。

  2、 计算:

  2/7+2/7+2/7 3/10+3/10+3/10

  (1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

  二、 尝试、探究

  1、 分数乘整数的'意义,

  (1)学生说,教师板书:2/7×3 3/10×3

  (2)学生交流。(3)教师强调意义。

  2、 探究分数乘整数的计算法则,

  (1) 学生试计算3/10×3,汇报交流,

  方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

  (3)肯定学生想法,

  课件演示【例1】看教本:

  小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

  (1)学生审题, (2)引导学生看思考,

  (2) 学生交流板书:

  用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

  用乘法算:2/9×3=2×3/9=6/9=2/3(块)

  答:3个人一共吃2/3块。

  (4)小结计算法则:

  三、 巩固练习

  1、 做练习一的第1题。

  2、 做一做,

  四、 作业:第3、4题。

  五、 后记:

分数乘法教案 篇2

  教学目标

  1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。

  2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。

  教学重点和难点

  1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。

  2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。

  教学过程

  (一)复习准备

  1.谈话、提问。

  我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?

  为什么呢?

  分5份后取其中的2份是多少。)

  当一个数乘以分数时求的是什么?

  (一个数乘以分数就是求这个数的几分之几是多少。)

  2.口述下列算式的意义。

  求一个数的几分之几是多少怎样列式呢?

  3.列式。

  (二)学习新课

  1.出示例1。

  2.分析题意。

  (1)读题,找出已知条件和所求问题。

  (2)分析已知条件。

  ①谈话提问:

  题中有两个已知条件,其中学校买来100千克白菜是已知学校买来

  那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。

  ③汇报讨论结果。

  均分成5份,吃了的占其中的4份。)

  ④那么我们应把谁看作单位1?(100千克)

  ⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?

  3.列式解答。

  (1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?

  10054=80(千克)

  1005求的是什么?再乘以4呢?

  (2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?

  所以把谁看作单位1?(100千克)

  根据一个数乘以分数的意义应怎样列式?

  答:吃了80千克。

  4.课堂练习。

  队的有多少人?

  (1)读题,找出已知条件和问题。

  (3)请你们以小组为单位进行分析,并画出线段图,解答出来。

  (4)反馈。

  说一说你们小组的分析思路及解答方法。

  是多少。)

  5.小结。

  刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的.几分之几是多少。解答这类应用题的关键是什么?

  (分析含有分率的句子,找准单位1,再根据一个数乘以分数的意义列式解答。)

  6.下面我们来看这样一道题,看看它与上面的题有什么不同?

  (1)出示例2。

  (2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高

  (3)分析、画图。

  ①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)

  ②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)

  ③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?

  (4)看图列式。

  少。)

  ②怎样列式解答?

  7.改动上题,你能独立分析吗?

  米?

  (2)画图分析解答。

  (3)提问反馈:

  ①把谁看作单位1?

  ②小林身高怎样用线段图表示?

  ③求小林身高就是求什么?

  求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。

  (三)课堂总结

  例1、例2有什么相同点和不同点?

  (四)巩固反馈

  (画图,解答)

  球价格多少元?

  3.对比练习:

  少元?

  (五)布置作业

  20页第1~5题。

  课堂教学设计说明

  本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。

  例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

  例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。

分数乘法教案 篇3

  教学内容:

  教材第7-9页“分数乘法”(三)

  教学目标:

  1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;

  2.让学生经历猜想、验证等过程,体验数学研究的方法;

  3.培养逻辑推理能力,渗透一定的数学思维方法。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的`结果。

  教学过程:

  一、创设情境激趣揭题

  1.出示我国古代哲学著作的情景。

  2.出示复习题

  3×2/5 4/5×2

  3.顺势导入新课:分数乘法(三)

  二、扶放结合探究新知

  1.画图引导学生理解1/2*1/2的算例。

  2.出示3/4*1/4引导学生验证上面的计算方法,岩石推理过程。

  3.出示2/3*1/5, 5/6*2/3写出计算过程,小结计算方法:

  分子乘分子,分母乘分母。

  三、反馈矫正落实双基

  1.出示教材第8页试一试1-3题。

  2.引导学生发现规律。

  四、小结评价布置预习

  1.引导学生进行课堂小结。

  2.布置预习:教材10-11页练习一。

  板书设计:

  分数乘法(三)

  意义:求一个数的几分之几是多少?

  计算法则:分子乘分子作分子,分母乘分母作分母。

分数乘法教案 篇4

  一、教学目标。

  1、使学生理解分数乘整数的意义与整数乘法意义相同。

  2、使学生掌握分数乘整数的计算方法,能正确进行计算,明白计算过程中能约分的要先约分的道理。

  二、教学重点。

  使学生理解分数乘整数的意义及计算方法。

  三、教学难点。

  总结分数乘整数的计算方法,理解分数乘整数算式的意义。

  四、教学过程。

  (一)设疑激趣,提出问题

  1、把9+9+9+9+9改成乘法算式。

  2、把O.2+0.2+O.2+O.2改成乘法算式。

  3、(1)口答整数乘法的意义。

  (2)求几个相同加数和的简便运算。

  4、列式计算。

  (1)5个12是多少?

  12×5=

  (2)12个1.5是多少?

  1.5×12=

  (3)3个是多少?

  5、提出问题。

  教师:求3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

  板书课题:分数乘法(一)。

  (二)引导探索,解决问题。

  1、分数与整数相乘的意义。

  (1)出示题目。

  1个占1张彩纸的,3个占这张彩纸的几分之几?

  (2)探索交流。

  ①用图示表示。

  1个图案占这张彩纸的。3个图案占这张彩张的.。

  ②用加法计算。

  ③用乘法计算。

  (3)引导发现。

  教师:求几个相同的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义相同。

  2、分数与整数相乘的计算方法。

  (1)涂一涂,算一算。呈现题目。

  (2)引导观察算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的数字有什么关联?让学生认真观察算式数字,思考其中的关联,并和同学交流,说一说自己有什么发现。在这一基础上,师生共同探索其中的联系。

  (3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。

  (4)试一试。

  3、约分。

  教师:再计算时你有什么体会?让学生回答问题,同学之间进行交流,通过算式比较。最后,使全班学生明白:

  (1)在计算过程中,能约分的要先约分。

  (2)最后结果应该是最简分数。

  (三)巩固练习完成课文第3页“练一练”。

  1、第1题。

  完成后要将算式得数和涂的结果进行比较,并说明计算中的要点。

  2、第2题。利用教材提供的素材,教育学生节约用水。

  3、第3题。

  (1)让学生独立完成。

  (2)同学之间互相交流、校对,发现问题,及时反馈。

  (3)说一说计算的步骤、方法:

  ①分子与整数相乘作分子,分母不变。

  ②能约分的要先约分,再计算。

  4、第4题。

  (1)学生独立完成。

  (2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。

  5、第5题。让学生都算出结果,再观察各组题目的算式及结果,然后说一说有什么发现。

  (四)作业选用课时作业。

分数乘法教案 篇5

  教学目标

  抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.

  教学过程

  一、引入

  根据条件列出对应关系.

  1.青砖的块数比红砖多

  2.青砖的块数比红砖少

  3.红砖的块数比青砖多

  4.红砖的块数比青砖少

  上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?

  二、展开

  (一)将上列各条件补充一个共同的条件和问题,出示例1.

  红砖2100块 有青砖多少块?

  1.学生独立解答;

  2.大组交流;

  3.列表归纳.

  (二)出示例2

  电视机厂今年生产电视机3600台,____________________,去年生产多少台?

  1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.

  (1)相当于去年的25%

  (2)比去年少25%

  (3)比去年多25%

  (4)去年生产的是今年的25%

  (5)去年比今年少25%

  (6)去年比今年多25%

  2.将应选择的`条件填入下列各式后的括号内.

  ( )

  ( )

  ( )

  ( )

  ( )

  ( )

  3.师生共同分析

  (1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.

  分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:

  去年的产量□100

  今年的产量360025

  设去年生产x台,得到的式子:

  在第六个式子的括号里填(1).

  (2)按照式子找应补充的条件.

  如:

  分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).

  三、巩固

  (一)根据题意列式解答:

  果园里有梨树168棵 苹果树有多少棵?

  (二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一

  台机器要多少元?

  (三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?

  (四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?

  教案点评

  这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

分数乘法教案 篇6

  教学目标:

  1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。

  2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。

  3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。

  重点难点:

  1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;

  2.理解算理,会用线段图正确地分析题意。

  教学方法:

  讲授法、讨论法、谈话法、探究法

  教学准备:

  教师准备多媒体课件。

  教学过程:

  一、回顾旧知,导入新课

  谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?

  出示练习:20的4/5是多少?6的2/3 是多少?

  请同学说一说这两个题为什么用乘法计算。

  谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。

  二、合作探究,获取新知

  (一)创设情境,提出问题

  谈话:在学校举行的泥塑大赛中,同学们制作出许多精美

  的作品,请看大屏幕。

  出示课本10页的情境图和信息。

  谈话:从图中你获取了哪些信息?

  谈话:根据上面的信息你能提出什么数学问题?

  学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?

  谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。

  (二)探究方法,建立模型

  1.解决第一个问题:一班男生做了多少件?

  谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。

  (1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。

  (2)小组内说想法。

  (3)交流展示。指名到展示台前进行汇报。

  方法一:画线段图分析数量关系

  谈话:你是怎样画图的'?先画什么?再画什么?怎样想的?

  学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?

  谈话:线段图是个很好的工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。

  方法二:不借助于直观图,直接列式解决

  谈话:你是怎样想的?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?

  (男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)

  2.学生自己解决第二个问题:二班女生做了多少件?

  谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。

  着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示P11图示

  (三)观察比较

  谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?

  学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的量。

  三、应用模型,解决问题

  1.课本11页自主练习2:出示短吻鳄照片

  帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。

  2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。

  3.自主练习

  这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?

  尝试自主解决,全班交流,说出自己的想法和思路。

  四、引导总结,构建网络

  谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)

  五、作业布置

  自主练习5、6题

  板书设计:

  求一个数的几分之几是多少”的实际问题

分数乘法教案 篇7

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)

  3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?

  预设: 生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为。

  提出质疑:3个相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法

  1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?

  预设: 生1:按照加法计算=(个)。 生2:(个)。

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。

  2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  二、巩固练习,强化新知

  1.例1“做一做”第1题 师:说出你的思考过程。

  2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。 预设2:还可以说成求12 L的'3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 L的是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”

  2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)

  五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了,用去了多少吨?

  (2)一堆煤有吨,5堆这样的煤有多少吨?

  3.拓展练习

  1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

【分数乘法教案】相关文章:

分数乘法教案02-13

分数乘法教案精选15篇03-29

分数乘法教案15篇02-13

分数乘法教案(15篇)02-15

【精选】分数乘法教案四篇07-06

实用的分数乘法教案4篇01-22

有关分数乘法教案三篇06-12

实用的分数乘法教案3篇03-31

分数乘法教案范文7篇12-21

分数乘法说课稿01-17