- 相关推荐
人教版八年级下册数学优秀教案
作为一位无私奉献的人民教师,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。怎样写教案才更能起到其作用呢?以下是小编整理的人教版八年级下册数学优秀教案,欢迎阅读,希望大家能够喜欢。
人教版八年级下册数学优秀教案1
教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:
体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:
对于平均数、中位数、众数在不同情境中的应用。
教学方法:
归纳教学法。
教学过程:
一、知识回顾与思考
1、平均数、中位数、众数的概念及举例。
一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的'算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
三、课堂练习:复习题A组
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:
复习题B组、C组(选做)
人教版八年级下册数学优秀教案2
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的.二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
【八年级下册数学优秀教案】相关文章:
数学八年级下册的教学设计06-08
八年级下册物理的教案01-31
八年级数学下册教学反思04-26
八年级下册数学教学计划10-29
人教版八年级下册生物教案07-06
八年级生物下册教案人教版11-08
人教版八年级下册数学教学计划03-04
数学八年级下册工作计划三篇05-12
小学数学教案【优秀】09-04