当前位置:范文派>教学范文>教案>七年级数学教案

七年级数学教案

时间:2024-07-04 15:26:54 教案 我要投稿
  • 相关推荐

七年级数学教案

  作为一位杰出的老师,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。那么你有了解过教案吗?下面是小编为大家收集的七年级数学教案,仅供参考,大家一起来看看吧。

七年级数学教案

七年级数学教案1

  教学目标:

  1、了解公式的意义,使学生能用公式解决简单的实际问题;

  2、初步培养学生观察、分析及概括的能力;

  3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议:

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式。

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的'反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

七年级数学教案2

  教学目标:

  1、能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2、在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3、了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点:

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程:

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的.结合律)=105.

  2、引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.

  3、引导学生剖析法则

  (1)等号左边是什么运算?

  (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?

  (4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1、完成课本“想一想”:a?a?a等于什么?

  2、通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3、独立处理例2,从实际情境中学会处理问题的方法。

  4、处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:

  计算:

  (1)—a2·a6

  (2)(—x)·(—x)3

  (3)ym·ym+1

  (4)?7?8?73

  (5)?6?63

  (6)?5?53?5?。

  (7)?a?b?a?b?75422

  (8)?b?a?a?b?

  (9)x5·x6·x3

  (10)—b3·b3

  (11)—a·(—a)3

  (12)(—a)2·(—a)3·(—a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1、请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2、完成课本习题1.4中所有习题。

七年级数学教案3

  一、素质教育目标

  (一)知识教学点

  1.理解有理数乘方的意义.

  2.掌握有理数乘方的运算.

  (二)能力训练点

  1.培养学生观察、分析、比较、归纳、概括的能力.

  2.渗透转化思想.

  (三)德育渗透点:培养学生勤思、认真和勇于探索的精神.

  (四)美育渗透点

  把记成,显示了乘方符号的简洁美.

  二、学法引导

  1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.

  2.学生学法:探索的性质→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:运算.

  2.难点:运算的符号法则.

  3.疑点:①乘方和幂的区别.

  ②与的区别.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)创设情境,导入 新课

  师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?

  生:可以记作,读作的四次方.

  师:呢?

  生:可以记作,读作的五次方.

  师:(为正整数)呢?

  生:可以记作,读作的次方.

  师:很好!把个相乘,记作,既简单又明确.

  【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的..

  师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.

  生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.

  非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).

  【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.

  (二)探索新知,讲授新课

  1.求个相同因数的积的运算,叫做乘方.

  乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

  巩固练习(出示投影1)

  (1)在中,底数是__________,指数是___________,读作__________或读作___________;

  (2)在中,-2是__________,4是__________,读作__________或读作__________;

  (3)在中,底数是_________,指数是__________,读作__________;

  (4)5,底数是___________,指数是_____________.

  【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

  师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

  学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

  生:到目前为止,已经学习过五种运算,它们是:

  运算:加、减、乘、除、乘方;

  运算结果:和、差、积、商、幂;

  教师对学生的回答给予评价并鼓励.

  【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.

  师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

  学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

  【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

  2.练习:(出示投影2)

  计算:1.(1)2, (2), (3), (4).

  2.(1),,,.

  (2)-2,,.

  3.(1)0, (2), (3), (4).

  学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

  师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

  先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

  生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

  师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

  学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

  生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

  师:请同学思考一个问题,任何一个数的偶次幂是什么数?

  生:任何一个数的偶次幂是非负数.

  师:你能把上述结论用数学符号表示吗?

  生:(1)当时,(为正整数);

  (2)当

  (3)当时,(为正整数);

  (4)(为正整数);

  (为正整数);

  (为正整数,为有理数).

  【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

七年级数学教案4

  一、教材分析

  1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时

  2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用

  3、教学的重点、难点:

  重点:邻补角、对顶角的概念,对顶角的性质和应用。

  难点:理解对顶角性质的探索

  (确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)

  4、教学目标:

  A:知识与技能目标

  (1).理解对顶角和邻补角的概念,能在图形中辨认.

  (2).掌握对顶角相等的性质和它的推证过程

  (3).会用对顶角的性质进行有关的简单推理和计算.

  B:过程与方法目标

  (1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

  (2).体会具体到抽象再到具体的思想方法.

  C:情感、态度与价值目标

  (1).感受图形中和谐美、对称美.

  (2).感受合作交流带来的成功感,树立自信心.

  (3).感受数学应用的广泛性,使学生更加热爱数学

  二、学情分析:

  在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.

  三、教法和学法:

  教法:

  叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.

  学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.

  四、教学过程:

  1课前准备:课件,剪刀,纸片,相交线模型

  2教学过程:设置以下六个环节

  环节一:情景屋(创设情景,激发学习动机)

  请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的'应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线

  环节二:问题苑(合作交流,解释发现)

  通过一些问题的设置,激发学生探究的欲望,具体操作:

  (1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化

  (2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

  (让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)

  (3):分析研究此模型:

  设置以下一系列问题:

  A、两直线相交构成的4个角两两相配共能组成几对?(6对)

  B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。

  另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角

  C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。

  D、你能阐述它们互补和相等的理由吗?

  (一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)

  环节三:快乐房(大胆创设,感悟变换)

  (设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)

  环节四:实例库(拓展应用,升华提高)

  例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力

  例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力

  (一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).

  最后安排一个脑筋急转弯:见投影

  (让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)

  环节五:点金帚(学后反思感悟收获)

  通过本堂课的探究

  我经历了......

  我体会到......

  我感受到......

  (学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)

  角的名称

  特征

  性质

  相同点

  不同点

  对顶角

  ①两条直线相交而成的角

  ②有一个公共顶点

  ③没有公共边

  对顶角相等

  都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

  对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个

  邻补角

  ①两条直线相交面成的角

  ②有一个公共顶点

  ③有一条公共边

  邻补角互补

  环节六:沉思阁(课后延伸张扬个性)

  此为课后作业:

  (适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)

  五、教学设计说明:

  设计理念:面向全体学生,实现:

  ——人人学有价值的数学

  ——人人都能获得必需的数学

  ——不同的人在数学上得到不同的发展

  过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。

  设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。

七年级数学教案5

  【知识讲解】

  一、本讲主要学习内容

  1、代数式的意义

  2、列代数式的注意点

  3、代数式值的意义

  其中列代数式是重点,也是难点。

  下面讲述一下这三点知识的主要内容。

  1、代数式的意义

  用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等

  2.列代数式的注意点

  ⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。

  ⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。

  ⑶数字写在字母的前面。

  ⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。

  ⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。

  (6)两个代数式相乘,应该用分数形式表示。

  3.代数式值的意义

  用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。

  二、典型例题

  例1 填空

  ①棱长是acm 的正方体的体积是___cm3。

  ②温度由t°c下降2°c后是___°c。

  ③产量由m千克增长10%,就达到___千克。

  ④a和b 的倒数和是___。

  ⑤a和b的和的倒数是___。

  解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤

  说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。

  ⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。

  例2、用代数式表示

  ⑴被4整除得 m的数

  ⑵被2除商为 a余1的数

  ⑶两数的平均数

  ⑷a和b两数的平方差与这两数平方和的商

  ⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。

  ⑺个位数字是8,十位数字是 b 的两位数。

  解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。

  ⑷ ⑸ ⑹ ⑺10b+8

  分析说明:

  ⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。

  ⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。

  ⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的.字母表示。

  ⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。

  ⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。

  ⑹平均速度=

  所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。

  题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。

  例3说出下列代数式的意义。

  ⑴ 3a+2 ⑵ 3(a+2) (3)

  (4) a- (5)(a-b)2 (6)a2-b2

  分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。

  ①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;

  ②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;

  ③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。

  解:(1)a的3倍与2的和;

  (2)a与2的和的3倍;

  (3)a与b的差除以c的商;

  (4)a与b除以c的差;

  (5)a与b的差的平方;

  (6)a、b的平方差。

  例4、当x=7,y=4, z=0时,求代数式x ( 2x-y+3z)的值。

  解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70

  说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。

  【一周一练】

  1、选择题

  (1)下列各式中,属于代数式的有( )个。

  , s= ah, 5× , -y, x-2=y, a-b, 3x>y

  a、2 b、3 c、4 d、5

  (2)下列代数式,书写正确的是( )

  a、2 b、m· n c、 mn d、(m+n)÷2

  (3)用代数式表示“a的 乘以b减去c的积”是( )

  a、 ab-c b、 a(b-c) c、 a( b-c) d、

  (4)用语言叙述代数式 ,表述不正确的是( )

  a、比a的倒数小2的数; b、a与2的差的倒数

  c、1除以a减去2的商 d、比a小2的数的倒数

  2、判断题

  ⑴n除m用代数式可表示成 ( )

  ⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )

  ⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )

  3、填空题

  ⑴每本练习本是0.3元,买a本练习本需__元。

  ⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。

  ⑶被3整除得n 的数是__。

  ⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。

  ⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。

  ⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。

  ⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__

  ⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。

  4.求下列代数式的值。

  ⑴ 其中a=2

  ⑵当 时,求代数式 的值。

  5、填表

  x

  y

  x+y

  x-y

  xy

  5

  15

  6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。

七年级数学教案6

  一、课题

  2.1数怎么不够用了(2)

  二、教学目标

  1.使学生理解有理数的意义,并能将给出的有理数进行分类;

  2.培养学生树立分类讨论的思想。

  三、教学重点和难点

  重点

  难点

  有理数包括哪些数.

  有理数的分类及其分类的标准.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  启发式教学

  六、教学过程

  (一)、从学生原有的认知结构提出问题

  1.什么是正、负数?

  2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.

  3.任何一个正数都比0大吗?任何一个负数都比0小吗?

  4.什么是整数?什么是分数?

  根据学生的回答引出新课.

  (二)、讲授新课

  1.给出新的整数、分数概念

  引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即

  2.给出有理数概念

  整数和分数统称为有理数,即

  有理数是英语“Rational number”的译名,更确切的译名应译作“比

  3.有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充.

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即

  并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.

  (三)、运用举例 变式练习

  例1

  将下列数按上述两种标准分类:

  例2

  下列各数是正数还是负数,是整数还是分数:

  课堂练习

  25、-100按两种标准分类.

  2、下列各数是正数还是负数,是整数还是分数?

  (四)、小结

  教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

  七、练习设计

  1.把下列各数填在相应的括号里(将各数用逗号分开):

  正整数集合:{ …};

  负整数集合:{ …};

  正分数集合:{ …};

  负分数集合:{ …}.

  2.填空题:

  的数是______,在分数集合里的数是______;

  (2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.

  3.选择题

  (1)-100不是

  A.有理数 B.自然数 C.整数 D.负有理数

  (2)在以下说法中,正确的是[ ]

  A.非负有理数就是正有理数

  B.零表示没有,不是有理数

  C.正整数和负整数统称为整数

  D.整数和分数统称为有理数

  八、板书设计

  2.1数怎么不够用了(2)

  (一)知识回顾 (三)例题解析 (五)课堂小结

  (二)观察发现 例1、例2

  (四)课堂练习 练习设计

  九、教学后记

  在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的'是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.

  为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:

  1.分类的标准不同,分类的结果也不相同;

  2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.

七年级数学教案7

  教学目标

  1.知识与技能

  ①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

  2.过程与方法

  经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

  3.情感、态度与价值观

  通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

  教学重点难点

  重点:会把所给的各数填入它所在的'数集的图里.难点:掌握有理数的两种分类.

  教与学互动设计

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

  说明:我们把所有的这些数统称为有理数.

七年级数学教案8

  教学内容:

  课本第160 163页。主要内容为通过一个直线相交的课件的分析得到相交直线垂直的概念,并进一步探索垂足的概念和垂直的性质,同时探索了两条直线之间被第三条直线所截形成的角。

  第一课时

  4.7.1 垂线

  教学目标

  ▲ 知识与能力

  1、分析和探索垂直的概念,体会垂直的性质。

  2、理解过平面中一点有且只有一条垂线的性质。

  ▲ 过程与方法

  1、复习相关内容并引入新课。

  2、通过对相关课件的分析,引出两条直线垂直以及相关的概念。

  3、通过对例题图形的操作得到垂直的性质。

  ▲ 情感、态度与价值观

  通过对课件的分析,引导学生得出生垂直的定义,从而进一步培养学生探索精神和探索能力。

  教学重、难点及突破

  ▲ 重点

  两条直线的垂直概念以及垂直的性质。

  ▲ 难点

  能充分理解垂直的定义,并能应用于解决实际问题。

  ▲ 教学突破

  本节内容较为形象化,涉及到的图形较多,所以建议教师在教学的'过程中能够充分的利用多媒体课件等教学的资源,能给喾学生较为形象的描述以帮助学生认识个中关系,从而使学生较深刻地理解本节内容。另外在本世中节建议教师对学生进行一些数学语言的训练,使学生能用数学语言描述图形的位置关系,从机时进一步培养学生用数学说话的习惯。

  教学准备

  ▲教师准备

  有关相交直线移动的课件

  ▲学生准备

  预习相交线的概念

  教学流程设计

  教师指导

  学生活动

  1.设问,引导学生回顾两直线相交的内容,并引入新课

  2.通过对两相交直线的旋转的动画分析,从直观上得到两直线垂直的概念.

  3.引导学生动手画得到垂 直的唯一性.

  4.布置适当练习,巩固所学

  1.认真地回顾两直线相交的知识,并随着教师的思路进入新课的学习.

  2.通过对动画效果的分析,能总结出两直线垂直的概念.

  3.通过亲手画图得到垂 直的唯一性.

  4.完成练习,对所学内容有进一步的理解.

  一、导入新课

  教师活动

  学生活动

  1、导入:我们在以前学习了相交直线的知识,让我们一起回忆一下。

  2、总结学生的回答,并做出适当补充,引入新课:今天我们进一步讨论相交线问题。

  1、认真地回忆有关相交直线的内容,进一步提升认识,并在此基础上积极回答问题。

  2、在教师作总结的过程中积极思考,并随着教师的思路进入新课。

  二、对相交线的探索

  教师活动

  学生活动

  1、 用电脑展示两直交线中的一条沿着交点旋转形成垂直的动画效果,引导学生观察并讨论得到垂直的概念,向学生渗透从几何直观到抽象概念的思维过程。

  2、 引导学生完成课本第161页“试一试”的内容,鼓励讨论在直线外或直线上一点能引该直线的几条生垂线?在此过程中培养学生动手操作解决问题的能力。

  3、 让学生观察课本第161页图4.7.6,提问:点A与直线BC上各点连线中哪条最短

  4、 总结学生的回答,讲述点到直线距离概念,提醒学生注意垂线段与线的区别.

  5、 组织学生观察讨论课本第162页”做一做”的内容,在此过程中通过小海龟的运动渗透旋转思想.

  6、 练习:课本第162页练习1-3题.

  7、 教师小结本内容

  8、 布置作业:课本第166页习题4.7第1题

  1)认真积极讨论,基础上发现图形中两条相交直线形成的四个角是直角,从而认识两条直线垂直的概念,能初步理解从几何直观到抽象概念的过程。

  2)认真完成“试一试|”的内容并积极讨论,在此过程中发现在同一平面内,经过直线外或直线上一点有且只有一条垂线。

  3)认真观察,动手测量,积极讨论可发现点A与直线BC各点连线中AB最短。

  4)结合图形,认识点到直线距离的概念,掌握垂线与垂线段的区别。

  5)通过做出图形和讨论能发现两条相交直线垂直可以看作一条直线是另一条直线绕点旋转90度得到的,从而理解旋转思想。

  6)认真完成练习,巩固所学的知识。

  7)学生完成作业

七年级数学教案9

  一、教学目标

  (一)知识教学点

  1、使学生能利用公式解决简单的实际问题。

  2、使学生理解公式与代数式的关系。

  (二)能力训练点

  1、利用数学公式解决实际问题的能力。

  2、利用已知的公式推导新公式的能力。

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践。

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的'多种数学方法,从而使学生感受到数学公式的简洁美。

  二、学法引导

  1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。

  2、学生学法:观察→分析→推导→计算。

  三、重点、难点、疑点及解决办法

  1、重点:利用旧公式推导出新的图形的计算公式。

  2、难点:同重点。

  3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。

  板书:公式

  师:小学里学过哪些面积公式?

  板书:S=ah

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

七年级数学教案10

  教学目标

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点 数轴的概念和用数轴上的`点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题 教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  点表示数的理性认识。

  合作交流

  探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论 问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结 请学生总结:

  1, 数轴的三个要素;

  2, 数轴的作以及数与点的转化方法。

  本课作业 1, 必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案11

  教学目标

  1 知识与技能:

  使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  2 过程与方法:

  通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

  3 情感态度与价值观:

  让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

  教学重难点

  1 教学重点:

  掌握用整十数除的口算方法。

  2 教学难点:

  理解用整十数除的口算算理。

  教学工具

  多媒体设备

  教学过程

  1 复习引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2 新知探究

  1、教学例1

  有80面彩旗,每班分20面,可以分给几个班?

  (1)提出问题,寻找解决问题的方法。

  师:从中你能获取什么数学信息?

  师:怎样解决这个问题?

  (2)列式 80÷20

  (3)学生独立探索口算的方法

  师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

  学生汇报:

  预设学生可能会有以下两种口算方法:

  A.因为20×4=80,所以80÷20=4 这是想乘算除

  B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

  为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

  这样我们就把除数是整十数的转化为我们已经学过的表内除法。

  (4)师小结:

  同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

  把你喜欢的方法说给同桌听。

  (5)检查正误

  师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

  (6)用刚学会的方法再次口算,并与同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

  (7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的`?和同学们交流一下。

  生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

  师:谁想把你的方法跟大家说一说。

  预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

  19接近于20,80除以20等于 4,所以80除以19约等于4。

  2、教学例2

  (1)创设情境引出问题

  师:谁会解决这个问题?

  150÷50

  (2)小组讨论口算方法

  (3)你是怎么这样快就算出的呢?

  A.因为15÷5=3,所以150÷50=3。

  B.因为3个50是150,所以150÷50=3。

  这一题跟刚才分彩旗的口算方法有不同吗?

  都是运用想乘算除和表内除法这两种方法来口算的。

  师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

  口算练习:150÷30 240÷80 300÷50 540÷90

  3、估算

  (1)探计估算的方法

  师:你能知道题目要求我们做什么吗?

  你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

  (2)谁想把你的方法跟大家说一说。

  (3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

  (4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

  3 巩固提升

  1、独立口算

  观察每道题,怎样很快说出下面除法算式的商?

  如果估算的话把谁估成多少。

  2、算一算、说一说。

  (1)除数不变,被除数乘几,商也乘几。

  (2)被除数不变,除数乘几,商反而除以几。

  3、解决问题

  (1)一共要寄240本书,每包40本。要捆多少包?

  你能找到什么条件、问题。你会解决吗?

  240÷40 = 6(包)

  答:要捆6包。

  (2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

  出示条件:一共有120个小故事,每天看1个故事。

  问题:看完这本书大约需要几个月?

  问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

  120÷30 = 4(个)

  答:看完这本书大约需要4个月。

  课后小结

  这节课你有什么收获?还有什么问题?

  本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  板书

  口算除法

  有80面彩旗,每班分20面,可以分给几个班?

  80÷20=

七年级数学教案12

  教学目标:

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点:

  数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题

  教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。

  探究新知

  教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的.同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论

  问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结

  请学生总结:

  1, 数轴的三个要素;

  2, 数轴的作以及数与点的转化方法。

  本课作业

  1, 必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案13

  一、教学目标:

  ⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

  ⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

  ⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

  二、教学重点、难点:

  余角与补角的性质

  三、教学过程:

  复习、引入:

  ⑴复习角的定义。你知道有哪些特殊的角?

  ⑵用量角器量一量图中每组两个角的'度数,并求出它们的和。

  你有什么发现?

  新课:

  由学生的发现,给出余角和补角的定义(文字叙述)。

  并且用数学符号语言进行理解。

  问题1:如何求一个角的余角和补角。

  ①∠1的余角:90°-∠1

  ②∠α的补角:180°-∠α

  练习:填表(求一个角的余角、补角)

  拓广:观察表格,你发现α的余角和α的补角有什么关系?

  如何进行理论推导?

  结论:α的补角比α的余角大90°

  α一定是锐角

  钝角没有余角,但一定有补角。

七年级数学教案14

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1。学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2。联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1。马路用什么几何图形代表?(直线)

  2。文中相关地点用什么代表?(直线上的点)

  3。学校大门起什么作用?(基准点、参照物)

  4。你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1。0代表什么?

  2。数的符号的实际意义是什么?

  3。—75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1。什么样的直线叫数轴?它具备什么条件。

  2。如何画数轴?

  3。根据上述实例的经验,“原点”起什么作用?

  4。你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1。判断下列图形是否是数轴。

  2。口答:数轴上各点表示的数。

  3。在数轴上描出下列各点:1。5,—2,—2。5,2,2。5,0,—1。5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1。什么是数轴?

  2。数轴的“三要素”各指什么?

  3。数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1。下列命题正确的是()

  A。数轴上的点都表示整数。

  B。数轴上表示4与—4的`点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C。数轴包括原点与正方向两个要素。

  D。数轴上的点只能表示正数和零。

  2。画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3。画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

  五、板书

  1。数轴的定义。

  2。数轴的三要素(图)。

  3。数轴的画法。

  4。性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1。什么样的直线叫数轴?

  定义:规定了_________、________、_________的直线叫数轴。

  数轴的三要素:_________、_________、__________。

  2。画数轴的步骤是什么?

  3。“原点”起什么作用?__________

  4。你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1。画一条数轴

  2。在你画好的数轴上表示下列有理数:1。5,—2,—2。5,2,2。5,0,—1。5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

  练习:

  1。数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

  2。距离原点距离为5个单位的点表示的数是________。

  3。在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

  附:目标检测

  1。下列命题正确的是()

  A。数轴上的点都表示整数。

  B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C。数轴包括原点与正方向两个要素。

  D。数轴上的点只能表示正数和零。

  2。画数轴,在数轴上标出—5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

  3。画数轴,观察数轴,在原点左边的点有_______个。

  4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

七年级数学教案15

  教学目标

  使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;

  能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;

  经历运用计算器探求数学规律的过程,发展合情推理能力。

  教学难点

  用有理数估计一个无理的大致范围。

  知识重点

  用有理数估计一个无理的大致范围。

  对于计算器的使用,在教学中采用学生自己阅读计算器的说明书、自己操作练习来掌握用计算器进行开立方运算的方法,并让学生互相交流,让学生亲身体会到利用计算器不仅能给运算带来很大的方便,也给探求数量间的关系与变化带来方便。在教学过程中,教师要关注学生能否通过阅读,掌握用计算器进行开立方运算的简单操作;能否利用计算器探究数量间的关系,从而寻找出数量的变化关系。

  使用计算器进行复杂运算,可以使学生学习的重点更好地集中到理解数学的本质上来,而估算也是一种具有实际应用价值的运算能力,在本节课的课堂教学中综合运用笔算、计算器和估算等培养学生的运算能力。知识点一:多边形的概念

  ⑴多边形定义:在平面内,由一些线段首位顺次相接组成的图形叫做________、

  如果一个多边形由n条线段组成,那么这个多边形叫做____________。(一个多边形由几条线段组成,就叫做几边形、)

  多边形的表示:用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针的顺序。如五边形ABCDE。

  ⑵多边形的边、顶点、内角和外角、

  多边形相邻两边组成的角叫做______________,多边形的边与它的邻边的延长线组成的角叫做________________、

  ⑶多边形的对角线

  连接多边形的不相邻的两个顶点的线段,叫做___________________、画一个五边形ABCDE,并画出所有的对角线。知识点二:凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的______,这样的四边形叫做凸四边形,这样的`多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画CD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是______多边形、

  知识点二:正多边形

  各个角都相等,各条边都相等的多边形叫做_____________、

  探究多边形的对角线条数

  知识点三:多边形的内角和公式推导

  1、我们知道三角形的内角和为__________、

  2、我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是______°、

  3、正方形和长方形都是特殊的四边形,其内角和为360度,那么一般的四边形的内角和为多少呢?

  4、画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果、从中你得到什么结论?

  探究1:任意画一个四边形,量出它的4个内角,计算它们的和、再画几个四边形,?量一量、算一算、你能得出什么结论?能否利用三角形内角和等于180?°得出这个结论?结论:。

  探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,?请填空:

  (1)从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______、

  (2)从六边形的一个顶点出发,可以引_____条对角线,它们将六边形分为_____个三角形,六边形的内角和等于180°×______、探究3:一般地,怎样求n边形的内角和呢?请填空:

  从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n边形的内角和等于180°×______、

  综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则

  n边形的内角和等于______________、

  想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形、除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

  知识点四:多边形的外角和

  探究4:如图8,在六边形的每个顶点处各取一个外角,?这些外角的和叫做六边形的外角和、六边形的外角和等于多少?

  问题:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?多边形的外角和定理:。理解与运用

  例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°、求:∠B与∠D的关系、

  自我检测:

  (一)、判断题、

  1、当多边形边数增加时,它的内角和也随着增加、()

  2、当多边形边数增加时、它的外角和也随着增加、()

  3、三角形的外角和与一多边形的外角和相等、()

  4、从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形、()

  5、四边形的四个内角至少有一个角不小于直角、()

  (二)、填空题、

  1、一个多边形的每一个外角都等于30°,则这个多边形为

  2、一个多边形的每个内角都等于135°,则这个多边形为

  3、内角和等于外角和的多边形是边形、

  4、内角和为1440°的多边形是

  5、若多边形内角和等于外角和的3倍,则这个多边形是边形、

  6、五边形的对角线有

  7、一个多边形的内角和为4320°,则它的边数为

  8、多边形每个内角都相等,内角和为720°,则它的每一个外角为

  9、四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠、

  10、四边形的四个内角中,直角最多有个,钝角最多有锐角最

  (三)解答题

  1、一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?

  2、在每个内角都相等的多边形中,若一个外角是它相邻内角的则这个多边形是几边形?

  3、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。

  4、一个多边形的每一个内角都等于其相等外角的

  5、一个多边形少一个内角的度数和为2300°、

  (1)求它的边数;

  (2)求少的那个内角的度数、

【七年级数学教案】相关文章:

[精选]小学数学教案08-09

小学数学教案[经典]08-21

(经典)小学数学教案08-13

小学数学教案07-20

幼儿的数学教案03-01

小学数学教案【精选】08-30

小学数学教案07-19

初中数学教案02-23

(精选)小学数学教案07-25

初中数学教案05-28