八年级数学下册教案【锦集15篇】
作为一名优秀的教育工作者,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。那么教案应该怎么写才合适呢?下面是小编收集整理的八年级数学下册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级数学下册教案1
一、教学目标:
1、会根据频数分布表求加权平均数,从而解决一些实际问题
2、会用计算器求加权平均数的值
3、会运用样本估计总体的方法来获得对总体的认识
二、重点、难点:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
三、教学过程:
1、复习
组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的'每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
2、教材P140探究栏目的意图
①、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
3、教材P140的思考的意图。
①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题。
②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
4、利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
5、运用样本估计总体
要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况。
八年级数学下册教案2
第一步;理解体验:
1、复习平均数、中位数和众数定义
2、引入课本P146R的例子
思路点拨:商场统计每位营业员在某月的销售额组成一个样本,从样本数据中的平均数、中位数、众数中得到信息估计总体的趋势,达到问题的解决。
由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。
本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。
第二步:总结提升:
平均数、众数和中位数这三个数据代表的异同:
平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量
平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的.影响较大.
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.
平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.
中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
实际问题中求得的平均数,众数,中位数应带上单位.
第三步:随堂练习:
1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分5060708090100110120
人数2361415541
分别求出这些学生成绩的众数、中位数和平均数.
2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)
甲群:13、13、14、15、15、15、16、17、17。
乙群:3、4、4、5、5、6、6、54、57。
(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。
(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。
答案:1.众数90中位数85平均数84.6
2.(1)15、15、15、众数(2).15、5.5、6、中位数
第四步:课后练习:
1、某公司的33名职工的月工资(以元为单位)如下:
职员董事长副董事长董事总经理经理管理员职员
人数11215320
工资5500500035003000250020001500
(1)、求该公司职员月工资的平均数、中位数、众数?
(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示
八年级数学下册教案3
一、创设情境
1.一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).
2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).
3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.
2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.
解因为x轴上点的纵坐标是0,y轴上点的`横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
八年级数学下册教案4
教学准备
教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.
学生准备:复习平行四边形性质;学具:课本“探究”内容.
学法解析
1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.
2.知识线索:
3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.
教学过程
一、回顾交流,逆向思索
教师提问:
1.平行四边形定义是什么?如何表示?
2.平行四边形性质是什么?如何概括?
学生活动:思考后举手回答:
回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)
回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).
教师归纳:(投影显示)
平行四边形【活动方略】
教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.
学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:
(1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;
(2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的.顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.
(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册教案5
1.请同学们回忆(≥0,b≥0)是如何得到的?
2.学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:
(≥0,b0)
使学生回忆起二次根式乘法的运算方法的推导过程.
类似地,请每个同学再举一个例子,
请学生们思考为什么b的取值范围变小了?
与学生一起写清解题过程,提醒他们被开方式一定要开尽.
对比二次根式的乘法推导出除法的运算方法
增强学生的自信心,并从一开始就使他们参与到推导过程中来.
对学生进一步强化被开方数的取值范围,以及分母不能为零.
强化学生的`解题格式一定要标准.
教学过程设计
问题与情境师生行为设计意图
活动二自我检测
活动三挑战逆向思维
把反过来,就得到
(≥0,b0)
利用它就可以进行二次根式的化简.
例2化简:
(1)
(2)(b≥0).
解:(1)(2)练习2化简:
(1)(2)活动四谈谈你的收获
1.商的算术平方根的性质(注意公式成立的条件).
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用吗?
找学生口述解题过程,教师将过程写在黑板上.
请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.
请学生自己谈收获,并总结本节课的主要内容.
为了更快地发现学生的错误之处,以便纠正.
此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.
让学困生在自己做题时有一个参照.
充分发挥组长的作用,尽可能在课堂上将问题解决.
八年级数学下册教案6
教学目标
(一)教学知识点
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求
使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.
●教学重点
1.分式的概念及其基本性质.
2.分式的运算法则.
3.分式方程的概念及其解法.
4.分式方程的应用.
●教学难点
1.分式的运算及分式方程的解法.
2.分式方程的应用.
●教学方法
讨论——交流法
讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.
●教具准备
投影片两张,实物投影仪
第一张:问题串,(记作§3.5A)
第二张:例题分析,(记作§3.5B)
●教学过程
Ⅰ.提出问题,回顾本章的知识.
出示投影片(§3.5A)
问题串:
1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请举一例.
2.分式的`性质及有关运算法则与分数有什么异同?
3.如何解分式方程?它与解一元一次方程有何联系与区别?
[师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.
(教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)
[生]实际生活中的一些量可以用分式表示,例如(用实物投影)
某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?
[生]我们组来回答此问题,此人晨练时平均每分钟行米.
我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________m.
[生]应为m.
[师]同学们举的例子都很有特色,谁还能举.
[生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?
[生]原价为元.……
[师]都是分式.分式有什么特点?和整式有何区别?
[生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.
[生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)
某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?
解:设采用新工艺前、后每时分别加工x个,1.5x个,根据题意,得
八年级数学下册教案7
【教学目标】
一、知识目标
经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。
二、能力目标
知道分时方程的意义,会解可化为一元一次方程的分式方程。
三、情感目标
在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
【教学重难点】
将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。
【教学过程】
一、课前预习与导学
1.什么叫做分式方程?解分式方程的步骤有哪几步?
2.判断下面解方程的过程是否正确,若不正确,请加以改正。
解方程:=3-
解:两边同乘以(x-1),得
2=3-x=1,①
x=3+1-2,②
所以x=2.③
(不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)
3.解下列分式方程:(1)=(2)+=2.
二、新课
(一)情境创设:
1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?
设甲每天加工服装多少件,可得方程:
2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?
设这个两位数的十位数字是x,可得方程:
3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的.相等关系?
设自行车的速度为xkm/h,可得方程:
(二)探索活动:
1.上面所得到的方程有什么共同特点?
2.这些方程与整式方程有什么区别?
结论:分母中含有未知数的方程叫做分式方程。
3.如何解分式方程=?
解:这个分式方程的两边同乘各分式的最简公分母x(x+1),
可以得到一元一次方程:20(x+1)=24x
解这个方程,得
x=5
为了判断x=5是否是原方程的解,我们把x=5代入原方程:
左边==4,右边==4,左边=右边。
x=5是原方程的解。
说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。
三、例题教学:
例1.解方程:-=0
板书出解分式方程的一般过程及完整的书写格式。
解:方程两边同乘x(x-2),得
3(x-2)-2x=0
解这个方程,得
x=6
把x=6代入原方程:左边=右边=0,左边=右边。
x=6是原方程的解。
四、课堂练习:
1.下列各式中,分式方程是()
A.B.C.D.
2.分式方程解的情况是()
A.有解,B.有解C.有解,D.无解
3.解下列方程:
4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。
八年级数学下册教案8
一、学情分析
学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析
本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:
1.知识目标:
①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题
2.能力目标:
①进一步掌握推理证明的方法,发展演绎推理能力
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问
1.判断两个三角形全等的方法有哪几种?
2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通
1 / 5
过作等腰三角形底边的高来证明“等边对等角”.
要求学生完成,一位学生的过程如下:
已知:在△ABC中, AB=AC.
求证:∠B=∠C.
证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的对应角相等)
在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的`对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .
也有学生认同上述的证明。
教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。
2:引入新课
(1).“HL”定理.由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教师用多媒体演示:
定理 斜边和一条直角边对应相等的两个直角三角形全等.
这一定理可以简单地用“斜边、直角边”或“HL”表示.
2 / 5
22A'B'
从而肯定了第一位同学通过作底边的高证明两个三角形
全等,从而得到“等边对等角”的证法是正确的.
练习:判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题
(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).
求证:Rt△ABC≌Rt△A'B'C'.
证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).
通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。
3:做一做
问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)
4:议一议
3 / 5
BEADCDA'D'BB'
八年级数学下册教案9
一、教学目标
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、练习题的意图分析
1、P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2、P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的.公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3。P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“—”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘—’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解
P7例2。填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
P11例3。约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
P11例4。通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
八年级数学下册教案10
教学目标:
1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。
教学重点:去分母法解可化为一元一次方程或一元二次方程的`分式方程。验根的方法。
教学难点:验根的方法。分式方程增根产生的原因。
教学准备:小黑板。
教学过程:
复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?
(1);(2);(3);(4);
(5);(6);(7);(8)。
讲授新课:
1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。
2.讨论分式方程的解法:
(1)复习解方程时,怎样去分母?
(2)讲解例1:解方程(按课文讲解)
归纳:解分式方程的基本思想:
分式方程整式方程
(3)讲解例2:解方程(按课文讲解)
归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。
想一想:产生增根的原因是什么?
巩固练习:P1451t,2t。
课堂小结:什么叫做分式方程?
解分式方程时,为什么要检验?怎样检验?
布置作业:见作业本。
八年级数学下册教案11
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的通分.
2、根据你的预习和理解找出:
①与的最简公分母是; ②与的最简公分母是;
③与最简公分母是;④与的最简公分母是.
★★如何确定最简公分母?一般是取各分母的所有因式的.次幂的积
三、合作交流,解决问题:
1、通分:⑴与⑵,
2、通分:⑴与; ★⑵,.
四、课堂测控:
1、分式和的最简公分母是.分式和的最简公分母是.
2、化简:
3、分式,,,中已为最简分式的有( )
A、1个B、2个C、3个D、4个
4、化简分式的结果为( )
A、 B、 C、 D、
5、若分式的分子、分母中的x与y同时扩大2倍,则分式的值( )
A、扩大2倍B、缩小2倍C、不变D、是原来的2倍
6、不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以( )
A、10 B、9 C、45 D、90
7、不改变分式的值,使分子、分母次项的系数为整数,正确的是( )
A、 B、 C、 D、
8、通分:
⑴与⑵与
八年级数学下册教案12
教学目标:
1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。
2、能利用它们的性质和判定进行推理和计算。
3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。
教学重点、难点:
重点:掌握特殊平行四边形性质与判定。
难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。
教学过程:
一、梳理知识:
1.特殊平行四边形的性质.
1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm
则BC=_____cm,△BOC的周长=_____cm
2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,
则你能求出哪些线段的长度?
3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,
则AB=_____cm,△BOC的周长=_______cm.
小结:特殊平行四边形的性质(PPT呈现)
2.特殊平行四边形的.判定.
要使平行四边形ABCD成为矩形,需要增加的条件________.
要使平行四边形ABCD成为菱形,需要增加的条件________.
要使矩形ABCD成为正方形,需要增加的条件________.
要使菱形ABCD成为正方形,需要增加的条件________.
小结:特殊平行四边形的判定(PPT呈现)
二、深化提高:
1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,
四边形ADCE是一个正方形?并给出证明.
2.如图,矩形ABCD的对角线AC、BD交于点O,
过点D作DP∥OC,过C点作CP∥DO,交DP于点P,
试判断四边形CODP的形状.
变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?
变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?
3.如图,在中,是边的中点,分别是及其延长线上的点,.
(1)求证:.
(2)请连结,试判断四边形的形状,并说明理由.
(3)若四边形是菱形,判断的形状。
三、拓展提高
1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、
△BCE、△ACF,
(1)四边形ADEF是什么四边形?并说明理由
(2)当△ABC满足什么条件时,四边形ADEF是菱形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.
2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.
(1)求证:BE=CD;
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明,
四、课堂小结
五、作业
1.如图,在正方形ABCD中,P为对角线BD上一点,
PE⊥BC,垂足为E,PF⊥CD,垂足为F。
求证:EF=AP
2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,
EF⊥BD,交CD于点F,DE=2.5cm,求CF的长。
3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,
DH⊥AB于H,求:DH的长。
八年级数学下册教案13
一、教学目标
(一)知识目标
1、创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣。
2、让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题。
(二)能力目标
1、培养学生学数学、用数学的意识和能力。
2、能把已有的数学知识运用于勾股定理的探索过程。
3、能熟练掌握勾股定理及其变形公式,并会根据图形找出直角三角形及其三边,从而正确运用勾股定理及其变形公式于图形解决相关问题。 (三)情感目标
1、培养学生的自主探索精神,提高学生合作交流能力和解决问题的能力。
2、让学生感受数学文化的价值和中国传统数学的成就,激发学生的爱国热情,培养学生的民族自豪感,教育学生奋发图强、努力学习。
二、教学重点
通过图形找出直角三角形三边之间的关系,并正确运用勾股定理及其变形公式解决相关问题。
三、教学难点
运用已掌握的相关数学知识探索勾股定理。
四、教学过程
(一)创设情境,引出问题
想一想:
小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?
要解决这个问题,必须掌握这节课的内容。这节课我们要探讨的是直角三角形的三边有什么关系。
- 1 -
(二) 探索交流,得出新知
探讨之前我们一起来回忆一下直角三角形的三边:
如图,在Rt △ABC 中,∠C=90° ∠C 所对的边AB :斜边c ∠A 所对的边BC :直角边a ∠B 所对的边AC :直角边b
问题:在直角三角形中,a 、b 、c 三条边之间到底存在着怎样的关系呢? (1)我们先来探讨等腰直角三角形的三边之间的关系。
这个关系2500年前已经有数学家发现了,今天我们把当时的情景重现,A
C
a
B
请同学们也来看一看、找一找。
如图
数学家毕达哥拉斯的发现:S A +SB =SC
即:a 2+b2=c2
也就是说:在等腰直角三角形中,两直角边的平方和等于斜边的平方。
议一议:如果是一般的直角三角形,两直角边的平方和是否还会等于斜边的.平方? 如图
分析: SA +SB =SC 是否成立?
(1)正方形A 中含有 个小方格,即S A = 个单位面积。 (2)正方形B 中含有 个小方格,即S B = 个单位面积。 (3)由上可得:S A +SB = 个单位面积 问题:正方形C 的面积要如何求呢?与同伴进行交流。 方法一:
“补”成一个边长为整数格的大正方形,再减去四个直角边为整数格的三角形 方法二:分割成四个直角边为整数格的三角形,再加上一个小方格。 综上:
我们得出:S A +SB =SC
即:a +b=c
2
2
2
C
- 2 -
a
B
也就是说:在一般的直角三角形中,两直角边的平方和等于斜边的平方。
概括:
勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方
数学语言描述:
如图,在Rt △ABC 中,a 2+b2=c2
(用多媒体简单介绍勾股定理的名称由来、中国古代的数学成就及勾股定理的“无字证明”) (三)应用新知,解决问题
例1:求出下列直角三角形中未知边x 的长度 5
注意:要根据图表找出未知边是斜边还是直角边,勾股定理要用对。
从上面这两道例题,我们知道了在直角三角形中,任意已知两边,可以求第三边。 即勾股定理的变形公式: 如图,在Rt △ABC 中
(1)若已知a ,b 则求c 的公式为:c =(2)若已知a ,c 则求b 的公式为:b =(3)若已知b ,c 则求a 的公式为:a =
a +b c -a c -b
22
22
2
C
a
B
2
例2: 如图,在直角三角形ABC 中, ∠C=900, A
(1) 已知: a=5, b=12, 求c;
(2) 已知: b=8,c=10 , 求(3) 已知: a=
3, c=2, 求 请同学们利用这节课学到的勾股定理及推论解决我们课前提出的问题:
电视屏幕:
解:在Rt △ABC 中,AB=46厘米,BC=58厘米
由勾股定理得:AC=
?
D
A
46AB
2
+BC
2
2
=46+58
2
≈74(厘米)
∴不同意小明的想法。
- 3 -
58厘米
C
(四)归纳总结
(1)这节课你学到了什么知识?
①勾股定理:直角三角形两直角边的平方和等于斜边的平方。 ②在直角三角形中,任意已知两边,可以用勾股定理求第三边。 (2) 运用“勾股定理”应注意什么问题? ①要利用图形找到未知边所在的直角三角形; ②看清未知边是所在直角三角形的哪一边; ③勾股定理要用对。
(五)练习巩固
(1)、如图,受台风“麦莎”影响,一棵树在离地面8米处断裂, 树的顶部落在离树跟底部6米处,这棵树折断前有多高?
(2)、学校有一块长方形的花圃,经常有同学为了少走几步而走捷径,于是在草坪上开辟了一条“新路”,他们这样走少走了______步.
(每两步约为1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 则BC 的长为___________。 (六)作业
1. A、B 、C 组:课本第69、70页,习题18.1 第1, 2,3题. 2. A、B :练习册33、34页
3.A :课本第71页“阅读与思考”,了解勾股定理的多种证法。
八年级数学下册教案14
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的类型。
同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的'两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)
问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
八年级数学下册教案15
例题讲解
引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,
1、你有哪些乘车方案?
2、只租8辆车,能否一次把客人都运送走?
问题2;怎样租车
某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:
甲种客车乙种客车
载客量(单位:人/辆)4530
租金(单位:元/辆)400280
(1)共需租多少辆汽车?
(2)给出最节省费用的租车方案。
分析;
(1)要保证240名师生有车坐
(2)要使每辆汽车上至少要有1名教师
根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。
设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即
y=400x+280(6-x)
化简为:y=120x+1680
讨论:
根据问题中的条件,自变量x的.取值应有几种可能?
为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。
在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。
方案一:
4两甲种客车,2两乙种客车
y1=120×4+1680=2160
方案二:
5两甲种客车,1辆乙种客车
【八年级数学下册教案】相关文章:
八年级数学下册教案05-19
人教版八年级下册数学优秀教案12-14
数学八年级下册的教学设计06-08
八年级下册物理的教案01-31
八年级下册数学教学设计03-12
八年级数学下册教学反思04-26
人教版八年级下册生物教案07-06
八年级生物下册教案人教版11-08
八年级下册数学教学计划10-29